Cho hai đường tròn có cùng bán kính R cắt nhau tại hai điểm M, N. Đường trung trực của MN cắt hai đường tròn tại hai điểm A, Bvà nằm cùng phía đối với MN. Chứng minh rằng \(M{N^2} + A{B^2} = 4{R^2}\).
Giải:
\({T_{\overrightarrow {{O_2}{O_1}} }}:B \mapsto A\)
\(M \mapsto E\)
\( \Rightarrow \overrightarrow {BA} = \overrightarrow {ME} = \overrightarrow {{O_2}{O_1}} \)
∆NME vuông tại M (vì \(ME\parallel AB\) và \(AB \bot MN\)), do đó NE là đường kính. Từ đó ta có:
\(\eqalign{
& N{E^2} = N{M^2} + M{E^2} \cr
& \Leftrightarrow {\left( {2{\rm{R}}} \right)^2} = M{N^2} + A{B^2} \cr
& \Leftrightarrow M{N^2} + A{B^2} = 4{{\rm{R}}^2} \cr} \)
Sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục