Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.53 trang 37 Sách bài tập (SBT) Giải tích 12

Bình chọn:
3 trên 3 phiếu

Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.

Cho hàm số : y = x3 – 3x2

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.

b) Tìm các giá trị của tham số m để phương trình:  x3 – 3x2 – m = 0  có ba nghiệm phân biệt.

(Đề thi tốt nghiệp THPT năm 2008).

Hướng dẫn làm bài:

a) TXĐ: D = R

Sự biến thiên: 

\(\eqalign{
& y' = 3{x^2} - 6x = 3x(x - 2) \cr
& y' = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = 2 \hfill \cr} \right. \cr} \)                       

Hàm số đồng biến trên mỗi khoảng \(( - \infty ;0),(2; + \infty )\)

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại x = 0 ; y = y(0) = 0

Hàm số đạt cực tiểu tại x = 2; yCT = y(2) = -4.

Giới hạn: \(\mathop {\lim }\limits_{x \to  \pm \infty } y =  \pm \infty \)

Điểm uốn: \(y'' = 6x - 6,y'' = 0 \Leftrightarrow x = 1;y(1) =  - 2\)

Suy ra đồ thị có điểm uốn I(1; -2)

Bảng biến thiên:

 

Đồ thị:

 

Đồ thị cắt trục hoành tại O(0; 0), A(3; 0). Đồ thị đi qua điểm B(-1; -4); C(2; -4).

b) \({x^3} - 3{x^2} - m = 0 \Leftrightarrow {x^3} - 3{x^2} = m\)         (*)

Phương trình (*) có 3 nghiệm phân biệt khi và chỉ khi đường thẳng y = m cắt (C) tại 3 điểm phân biệt. Từ đó suy ra:  

- 4 < m < 0.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan