Cho tứ diện ABCD có I và J lần lượt là trọng tâm các tam giác ABC và ABD. Chứng minh rằng .
Giải:
(h.2.32)
Gọi K là trung điểm của AB.
Vì I là trọng tâm của tam giác ABC nên \(I \in KC\) và vì J là trọng tâm của tam giác ABD nên \(J \in KD\).
Từ đó suy ra \({{KI} \over {KC}} = {{KJ} \over {K{\rm{D}}}} = {1 \over 3} \Rightarrow IJ\parallel CD\).
Sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục