Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy là AD và BC. Biết AD = a, BC = b. Gọi I và J lần lượt là trọng tâm của các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD lần lượt tại P, Q.
a) Chứng minh MN song song với PQ.
b) Giả sử AM cắt BP tại E; CQ cắt DN tại F. Chứng minh rằng EF song song với MN và PQ. Tính EF theo a và b.
Giải:
(h.2.33)
a)
Ta có: \(I \in \left( {SA{\rm{D}}} \right) \Rightarrow I \in \left( {SA{\rm{D}}} \right) \cap \left( {IBC} \right)\)
Vậy
\(\left\{ \matrix{
A{\rm{D}}\parallel BC \hfill \cr
A{\rm{D}} \subset \left( {SA{\rm{D}}} \right) \hfill \cr
BC \subset \left( {IBC} \right) \hfill \cr} \right. \Rightarrow \left( {SA{\rm{D}}} \right) \cap \left( {IBC} \right) = PQ\)
và \(PQ\parallel A{\rm{D}}\parallel BC \,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
Tương tự: \(J \in \left( {SBC} \right) \Rightarrow J \in \left( {SBC} \right) \cap \left( {JAD} \right)\)
Vậy
\(\left\{ \matrix{
A{\rm{D}}\parallel BC \hfill \cr
A{\rm{D}} \subset \left( {JA{\rm{D}}} \right) \hfill \cr
BC \subset \left( {SBC} \right) \hfill \cr} \right. \Rightarrow \left( {JA{\rm{D}}} \right) \cap \left( {SBC} \right) = MN\) và \(MN\parallel BC\parallel AD\,\,\,\,\,\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(PQ\parallel MN\).
b) Ta có:
\(E = AM \cap BP \Rightarrow \left\{ \matrix{
E \in \left( {AMN{\rm{D}}} \right) \hfill \cr
E \in \left( {PBCQ} \right) \hfill \cr} \right.\)
\(F = DN \cap CQ \Rightarrow \left\{ \matrix{
F \in \left( {AMN{\rm{D}}} \right) \hfill \cr
F \in \left( {PBCQ} \right) \hfill \cr} \right.\)
Do đó: \(EF = \left( {AMN{\rm{D}}} \right) \cap \left( {PBCQ} \right)\)
Mà
\(\left\{ \matrix{
A{\rm{D}}\parallel BC \hfill \cr
MN\parallel PQ \hfill \cr} \right.\) suy ra \(EF\parallel A{\rm{D}}\parallel BC\parallel MN\parallel PQ\)
Tính
\(EF:CP \cap EF = K \Rightarrow EF = EK + KF\)
\(EK\parallel BC \Rightarrow {{EK} \over {BC}} = {{PE} \over {PB}}\,\,\,\,\,\,\,\,\,\,\,\,\,\left( * \right)\)
\(PM\parallel AB \Rightarrow {{PE} \over {EB}} = {{PM} \over {AB}}\)
Mà \({{PM} \over {AB}} = {{SP} \over {SA}} = {2 \over 3}\) suy ra \({{PE} \over {EB}} = {2 \over 3}\)
Từ (*) suy ra
\(\eqalign{
& {{EK} \over {BC}} = {{PE} \over {PB}} = {{PE} \over {PE + EB}} \cr
& = {1 \over {1 + {{EB} \over {PE}}}} = {1 \over {1 + {3 \over 2}}} = {2 \over 5} \cr
& \Rightarrow EK = {2 \over 5}BC = {2 \over 5}b \cr} \)
Tương tự ta tính được \(KF = {2 \over 5}a\)
Vậy: \(EF = {2 \over 5}a + {2 \over 5}b = {2 \over 5}\left( {a + b} \right)\)
Sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục