Cho tứ diện ABCD và điểm M nằm trong tam giác BCD.
a) Dựng đường thẳng qua M song song với hai mặt phẳng (ABC) và (ABD). Giả sử đường thẳng này cắt mặt phẳng (ACD) tại B’.
Chứng minh rằng AB’, BM và CD đồng quy tại một điểm.
b) Chứng minh \({{MB'} \over {BA}} = {{dt\left( {\Delta MC{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}}\)
c) Đường thẳng song song với hai mặt phẳng (ACB) và (ACD) kẻ từ M cắt (ABD) tại C’ và đường thẳng song song với hai mặt phẳng (ADC) và (ADB) kẻ từ M cắt (ABC) tại D’. Chứng minh rằng
\({{MB'} \over {BA}} + {{MC'} \over {CA}} + {{M{\rm{D}}'} \over {DA}} = 1\)
Giải:
a) MB’ qua M và song song với (ABC) và \(\left( {ABD} \right) \Rightarrow MB'\) song song với giao tuyến AB của hai mặt phẳng này. Ta có: \(MB'\parallel AB\) nên MB’ và AB xác định một mặt phẳng. Giả sử MB cắt AB’ tại I.
Ta có: \(I \in BM \Rightarrow I \in \left( {BC{\rm{D}}} \right)\)
\(I \in AB' \Rightarrow I \in \left( {AC{\rm{D}}} \right)\)
Nên \(I \in \left( {BC{\rm{D}}} \right) \cap \left( {AC{\rm{D}}} \right) = C{\rm{D}}\)
\(I \in C{\rm{D}}\)
Vậy ba đường thẳng AB’, BM và CD đồng quy tại I.
b) \(MB'\parallel AB \Rightarrow {{MB'} \over {AB}} = {{IM} \over {IB}}\)
Kẻ \(MM' \bot C{\rm{D}}\) và \(BH \bot C{\rm{D}}\)
Ta có: \(MM'\parallel BH \Rightarrow {{IM} \over {IB}} = {{MM'} \over {BH}}\)
Mặt khác:
\(\left\{ \matrix{
dt\left( {\Delta MC{\rm{D}}} \right) = {1 \over 2}C{\rm{D}}.MM` \hfill \cr
dt\left( {\Delta BC{\rm{D}}} \right) = {1 \over 2}C{\rm{D}}.BH \hfill \cr} \right.\)
\({{dt\left( {\Delta MC{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}} = {{{1 \over 2}C{\rm{D}}.MM'} \over {{1 \over 2}C{\rm{D}}.BH}} = {{MM'} \over {BH}}\)
Do đó: \({{MB'} \over {AB}} = {{IM} \over {IB}} = {{MM'} \over {BH}} = {{dt\left( {\Delta MC{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}}\). Vậy \({{MB'} \over {AB}} = {{dt\left( {\Delta MC{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}}\)
c) Tương tự ta có: \({{MC'} \over {CA}} = {{dt\left( {\Delta MB{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}}\)
\({{MD'} \over {DA}} = {{dt\left( {\Delta MBC} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}}\)
Vậy :
\(\eqalign{
& {{MB'} \over {AB}} + {{MC'} \over {CA}} + {{MD'} \over {DA}} \cr
& = {{dt\left( {\Delta MC{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}} + {{dt\left( {\Delta MB{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}} + {{dt\left( {\Delta MBC} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}} \cr
& = {{dt\left( {\Delta MC{\rm{D}}} \right) + dt\left( {\Delta MB{\rm{D}}} \right) + dt\left( {\Delta MBC} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}} \cr
& = {{dt\left( {\Delta BC{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}} = 1. \cr} \)
Sachbaitap.com
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục