Cho dãy số (un) với \(\left( {{u_n}} \right) = 1 + \left( {n - 1} \right){.2^n}\)
a) Viết năm số hạng đầu của dãy số ;
b) Tìm công thức truy hồi ;
c) Chứng minh (un) là dãy số tăng và bị chặn dưới.
Giải:
a) Học sinh tự giải.
b) HD: Tìm hiệu \({u_{n + 1}} - {u_n}\)
ĐS:
\(\left\{ \matrix{
{u_1} = 1 \hfill \cr
{u_{n + 1}} = {u_n} + \left( {n + 1} \right){2^n}{\rm\,\,{ với }}\,\,n \ge 1 \hfill \cr} \right.\)
c) HD: Xét dấu \({u_{n + 1}} - {u_n}\)
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục