Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.1 trang 117 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Khảo sát tính tăng, giảm của dãy số

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 - 7n\)

a)      Khảo sát tính tăng, giảm của dãy số ;

b)      Chứng minh dãy số trên là cấp số cộng. Lập công thức truy hồi của dãy số ;

c)      Tính tổng 100 số hạng đầu của dãy số.

Giải:

a)      Xét hiệu \(H = {u_{n + 1}} - {u_n} = 1 - 7\left( {n + 1} \right) - \left( {1 - 7n} \right) =  - 7 < 0\), vậy dãy số giảm.

b)      Do \({u_{n + 1}} = {u_n} - 7\) nên dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} =  - 6;d =  - 7\)

Công thức truy hồi là

\(\left\{ \matrix{
{u_1} = - 6 \hfill \cr
{u_{n + 1}} = {u_n} - 7{\rm\,\,{ với }}\,\,n \ge 1 \hfill \cr} \right.\)

c) \({S_{100}} =  - 35250\)    

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan