Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.1 trang 117 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Khảo sát tính tăng, giảm của dãy số

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 - 7n\)

a)      Khảo sát tính tăng, giảm của dãy số ;

b)      Chứng minh dãy số trên là cấp số cộng. Lập công thức truy hồi của dãy số ;

c)      Tính tổng 100 số hạng đầu của dãy số.

Giải:

a)      Xét hiệu \(H = {u_{n + 1}} - {u_n} = 1 - 7\left( {n + 1} \right) - \left( {1 - 7n} \right) =  - 7 < 0\), vậy dãy số giảm.

b)      Do \({u_{n + 1}} = {u_n} - 7\) nên dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} =  - 6;d =  - 7\)

Công thức truy hồi là

\(\left\{ \matrix{
{u_1} = - 6 \hfill \cr
{u_{n + 1}} = {u_n} - 7{\rm\,\,{ với }}\,\,n \ge 1 \hfill \cr} \right.\)

c) \({S_{100}} =  - 35250\)    

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan