Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.2 trang 118 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Trong các dãy số (un) sau đây, dãy số nào là cấp số cộng?

Trong các dãy số (un)sau đây, dãy số nào là cấp số cộng ?

a) \({u_n} = 3n - 1\) ;

b) \({u_n} = {2^n} + 1\) ;

c) \({u_n} = {\left( {n + 1} \right)^2} - {n^2}\) ;

d)

\(\left\{ \matrix{
{u_1} = 3 \hfill \cr
{u_{n + 1}} = 1 - {u_n} \hfill \cr} \right.\)

Giải:

a) \({u_{n + 1}} - {u_n} = 3\left( {n + 1} \right) - 1 - 3n + 1 = 3\) 

Vì \({u_{n + 1}} = {u_n} + 3\) nên \(\left( {{u_n}} \right)\) dãy số là cấp số cộng với \({u_1} = 2,d = 3.\)

b) \({u_{n + 1}} - {u_n} = {2^{n + 1}} + 1 - {2^n} - 1 = {2^n}.\) Vì \({2^n}\) không là hằng số nên dãy số \(\left( {{u_n}} \right)\) không phải là cấp số cộng.

c)      Ta có \({u_n} = 2n + 1.\)

Vì \({u_{n + 1}} - {u_n} = 2\left( {n + 1} \right) + 1 - 2n - 1 = 2,\) nên dãy đã cho là cấp số cộng với \({u_1} = 3;d = 2.\)

d)     Để chứng tỏ \(\left( {{u_n}} \right)\) không phải là cấp số cộng, ta chỉ cần chỉ ra, chẳng hạn \({u_3} - {u_2} \ne {u_2} - {u_1}\) là đủ.

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan