Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.8 trang 112 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Cho dãy số (un) thoả mãn điều kiện: Với mọi n ∈ N* thì

Cho dãy số (un) thoả mãn điều kiện: Với mọi N* thì \(0 < {u_n} < 1\) và \({u_{n + 1}} < 1 - {1 \over {4{u_n}}}\)

Chứng minh dãy số đã cho là dãy giảm.

Giải:

Vì \(0 < {u_n} < 1\) với mọi n nên \(1 - {u_{n + 1}} > 0\). 

Áp dụng bất đẳng thức Cô – si ta có \({u_{n + 1}}\left( {1 - {u_{n + 1}}} \right) \le {1 \over 4}\)

Mặt khác, từ giả thiết \({u_{n + 1}} < 1 - {1 \over {4{u_n}}}\)

suy ra \({u_{n + 1}}.{u_n} < {u_n} - {1 \over 4}\) hay \({1 \over 4} < {u_n}\left( {1 - {u_{n + 1}}} \right)\)

So sánh (1) và (2) ta có:

\({u_{n + 1}}\left( {1 - {u_{n + 1}}} \right) < {u_n}\left( {1 - {u_{n + 1}}} \right)\) hay \({u_{n + 1}} < {u_n}\) 

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan