Giải các bất phương trình mũ sau:
a) \({(8,4)^{\frac{{x - 3}}{{{x^2} + 1}}}} < 1\)
b) \({2^{|x - 2|}} > {4^{|x + 1|}}\)
c) \(\frac{{{4^x} - {2^{x + 1}} + 8}}{{{2^{1 - x}}}} < {8^x}\)
d) \(\frac{1}{{{3^x} + 5}} \le \frac{1}{{{3^{x + 1}} - 1}}\)
Hướng dẫn làm bài:
a) \(8,{4^{\frac{{x - 3}}{{{x^2} + 1}}}} < 8,{4^0} \Leftrightarrow \frac{{x - 3}}{{{x^2} + 1}} < 0 \Leftrightarrow x < 3\)
b)
\(\eqalign{
& {2^{|x - 2|}} > {2^{2|x + 1|}} \Leftrightarrow |x - 2| > 2|x + 1| \cr
& \Leftrightarrow {x^2} - 4x + 4 > 4({x^2} + 2x + 1) \cr
& \Leftrightarrow 3{x^2} + 12x < 0 \cr
& \Leftrightarrow - 4 < x < 0 \cr} \)
c)
\(\eqalign{
& {2^{2x}} - {2.2^x} + 8 < {2^{3x}}{.2^{1 - x}} \cr
& \Leftrightarrow {2^{2x}} + {2.2^x} - 8 > 0 \cr
& \Leftrightarrow \left\{ {\matrix{{t = {2^x},t > 0} \cr {{t^2} + 2t - 8 > 0} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{t = {2^x},t > 0} \cr {\left[ {\matrix{{t < - 4} \cr {t > 2} \cr} } \right.} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{t = {2^x}} \cr {t > 2} \cr} } \right. \Leftrightarrow x > 1 \cr} \)
d) Đặt t = 3x (t > 0) , ta có bất phương trình \(\frac{1}{{t + 5}} \le \frac{1}{{3t - 1}}\)
Vì vế trái dương nên vế phải cũng phải dương, tức là \(3t – 1 > 0\).
Từ đó ta có hệ:
\(\left\{ {\matrix{{3t - 1 \le t + 5} \cr {3t - 1 > 0} \cr} } \right. \Leftrightarrow {1 \over 3} < t \le 3\)
Do đó \(\frac{1}{3} < {3^x} \le 3\) . Vậy \( - 1 < x \le 1\) .
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục