Cho tứ diện S.ABC có D, E lần lượt trung điểm AC, BC và G là trọng tâm tam giác ABC. Mặt phẳng \(\left( \alpha \right)\) qua AC cắt SE, SB lần lượt tại M, N. Một mặt phẳng \(\left( \beta \right)\) qua BC cắt SD và SA lần lượt tại P và Q.
a) Gọi \(I = AM \cap DN,J = BP \cap EQ\). Chứng minh bốn điểm S, I, J, G thẳng hàng.
b) Giả sử \(AN \cap DM = K,BQ \cap EP = L\). Chứng minh ba điểm S, K, L thẳng hàng.
Giải:
a) Ta thấy:
+ G là trọng tâm tam giác ABC \( \Rightarrow G \in BD\)
+ \(I \in DN\) (theo cách dựng hình).
+ \(J \in BP\) (theo cách dựng hình).
\( \Rightarrow S,I,J,G \in mp(SPN)\)
Tương tự \( \Rightarrow S,I,J,G \in mp(SQM)\)
Vậy \(S,I,J,G\) là điểm chung của \(mp(SPN)\) và \(mp(SQM)\)
b)
Ta thấy:
+ \(S = PD \cap EM\)
+ \(K \in DM\)
+ \(L \in PE\)
\( \Rightarrow S,K,L \in (SPM)\)
Tương tự \( \Rightarrow S,K,L \in (SQN)\)
Vậy \(S,K,L\) là điểm chung của \((SPM)\) và \((SQN)\)
Sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục