Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3 trang 100 SBT Hình học 10 Nâng cao

Bình chọn:
3 trên 6 phiếu

Giải bài tập Bài 3 trang 100 SBT Hình học 10 Nâng cao

Cho đường thẳng \(\Delta :ax + by + c = 0\). Viết phương trình đường thẳng \(\Delta '\) đối xứng với đường thẳng \(\Delta \):

a) Qua trục hoành;

b) Qua trục tung;

c) Qua gốc tọa độ.

Giải

Xét điểm \(M(x_M ; y_M)\) tùy ý thuộc \(\Delta \)

a) Gọi \(N(x_N ; y_N)\) là điểm đối xứng với \(M\) qua \(Ox\). Khi đó \(\left\{ \begin{array}{l}{x_N} = {x_M}\\{y_N} =  - {y_M}\end{array} \right.\).

Do đó

\(\begin{array}{l}M \in \Delta\Leftrightarrow a{x_M} + b{y_M} + c = 0\\\Leftrightarrow   a{x_N} - b{y_N} + c = 0\\\Leftrightarrow   N \in {\Delta _1}:ax - by + c = 0.\end{array}\)

Vậy phương trình đường thẳng đối xứng vơí \(\Delta \) qua \(Ox\) là \(ax-by+c=0.\)

b) Gọi \(P(x_p ; y_p)\) là điểm đối xứng với \(\Delta \) qua \(Oy.\)

Khi đó ta có \(\left\{ \begin{array}{l}{x_P} =  - {x_M}\\{y_P} = {y_M}\end{array} \right.\).

Do đó :

\(\begin{array}{l}M \in \Delta\Leftrightarrow   a{x_M} + b{y_M} + c = 0\\\Leftrightarrow    - a{x_P} + b{y_P} + c = 0\\\Leftrightarrow   a{x_P} - b{y_P} - c = 0\\\Leftrightarrow   P \in {\Delta _2}: ax - by - c = 0.\end{array}\)

Vậy phương trình đường thẳng đối xứng với \(\Delta \) qua \(Oy\) là \(ax-by-c=0.\)

c) Gọi \(Q(x_Q ; y_Q)\) là điểm đối xứng với \(M\) qua \(O\). Khi đó ta có \(\left\{ \begin{array}{l}{x_Q} =  - {x_M}\\{y_Q} =  - {y_M}\end{array} \right.\).

Do đó

\(\begin{array}{l}M \in \Delta    \Leftrightarrow   a{x_M} + b{y_M} + c = 0\\                 \Leftrightarrow    - a{x_Q} - b{y_Q} + c = 0\\                 \Leftrightarrow   a{x_Q} + b{y_Q} - c = 0\\                 \Leftrightarrow   Q \in {\Delta _3}: ax + by - c = 0.\end{array}\)

Vậy phương trình đường thẳng đối xứng với \(\Delta \) qua \(O\) là \(ax+by-c=0.\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan