Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 4 trang 100 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 4 trang 100 SBT Hình học 10 Nâng cao

Cho điểm \(A(1 ; 3)\) và đường thẳng \(\Delta : x - 2y + 1 = 0\). Viết phương trình đường thẳng đối xứng với \(\Delta \) qua \(A.\)

Giải

Cách 1:Thay tọa độ điểm \(A\) vào \(\Delta \), ta có \(1 - 2.3 + 1 =  - 4 \ne 0\),  suy ra \(A \notin \Delta \).

Lấy \(M(1 ; 1) \in \Delta \). Khi đó điểm \(M’\) đối xứng với \(M\) qua \(A\) có tọa độ \(M’=(1 ; 5)\). Đường thẳng \(\Delta '\) đối xứng với \(\Delta \) qua \(A\) sẽ đi qua \(M’\) và song song với \(\Delta \). Từ đó ta có phương trình của \(\Delta '\) là \(x-2y+9=0.\)

Cách 2: Xét điểm \(M(x_1 ; y_1)\) tùy ý thuộc \(\Delta \) và gọi \(M’(x_2 ; y_2)\) là điểm đối xứng của \(M\) qua \(A\). Suy ra \({x_1} = 2 - {x_2} ;  {y_1} = 6 - {y_2}\).

\(\begin{array}{l}M \in \Delta     \Leftrightarrow   {x_1} - 2{y_1} + 10\\     \Leftrightarrow   2 - {x_2} - 2(6 - {y_2}) + 1 = 0\\                  \Leftrightarrow   {x_2} - 2{y_2} + 9 = 0\\                 \Leftrightarrow   M' \in \Delta ' : x - 2y + 9 = 0.\end{array}\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan