Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.1 trang 131 Sách bài tập (SBT) Hình học 11

Bình chọn:
4.5 trên 4 phiếu

Cho hình lập phương ABCDA’B’C’D’ cạnh a. Gọi O và O’ theo thứ tự là tâm của hai hình vuông ABCD và A’B’C’D’.

Cho hình lập phương ABCDA’B’C’D’ cạnh a. Gọi O và O’ theo thứ tự là tâm của hai hình vuông ABCD và A’B’C’D’.

a) Hãy biểu diễn các vectơ \(\overrightarrow {AO} ,\overrightarrow {AO'} \) theo các vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương đã cho.

b) Chứng minh rằng \(\overrightarrow {A{\rm{D}}}  + \overrightarrow {D'C'}  + \overrightarrow {D'A'}  = \overrightarrow {AB} \).

Giải:

a) *\(\overrightarrow {AO}  = {1 \over 2}\overrightarrow {AC}  = {1 \over 2}\overrightarrow {A'C'}  = {1 \over 2}\left( {\overrightarrow {AB}  + \overrightarrow {A{\rm{D}}} } \right)\)

\(\overrightarrow {AO}  = \overrightarrow {AB}  + \overrightarrow {BO}  = \overrightarrow {AB}  + {1 \over 2}\overrightarrow {B{\rm{D}}} ,v.v....\)

*\(\overrightarrow {AO}  = {1 \over 2}\overrightarrow {AC}  + \overrightarrow {AA'} \)

\(\eqalign{
& = {1 \over 2}\left( {\overrightarrow {AA'} + \overrightarrow {AC'} } \right) = {1 \over 2}\left( {\overrightarrow {AB'} + \overrightarrow {AD'} } \right) \cr
& = \overrightarrow {AA'} + \overrightarrow {A'B'} + {1 \over 2}\overrightarrow {B'D'} \cr
& = \overrightarrow {AB} + \overrightarrow {BB'} + {1 \over 2}\overrightarrow {B'D'} ,v.v... \cr} \)

b) \(\overrightarrow {AD}  + \overrightarrow {D'C'}  + \overrightarrow {D'A'}  = \overrightarrow {AD}  + \overrightarrow {DC}  + \overrightarrow {CB} \)

(vì \(\overrightarrow {D'C'}  = \overrightarrow {DC} \) và \(\overrightarrow {D'A'}  = \overrightarrow {CB} \)) nên \(\overrightarrow {A{\rm{D}}}  + \overrightarrow {D'C'}  + \overrightarrow {D'A'}  = \overrightarrow {AB} \).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan