Một đoạn thẳng AB không vuông góc với mặt phẳng \(\left( \alpha \right)\) cắt mặt phẳng này tại trung điểm O của đoạn thẳng đó. Các đường thẳng vuông góc với \(\left( \alpha \right)\) qua A và B lần lượt cắt mặt phẳng \(\left( \alpha \right)\) tại A’ và B’.
Chứng minh ba điểm A’, O, B’ thẳng hàng và AA’ = BB’
Giải:
\(\left\{ \matrix{
AA' \bot \left( \alpha \right) \hfill \cr
BB' \bot \left( \alpha \right) \hfill \cr} \right. \Rightarrow AA'\parallel BB'\)
Mặt phẳng (AA’, BB’) xác định bởi hai đường thẳng song song (AA’, BB’) cắt mặt phẳng \(\left( \alpha \right)\) theo giao tuyến qua O, A’, B’. Do đó ba điểm O, A’, B’ thẳng hàng.
Hai tam giác vuông OAA’và OBB’ bằng nhau vì có một cạnh huyền và một góc nhọn bằng nhau nên từ đó ta suy ra AA’ = BB’.
Sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục