Processing math: 100%
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.18 trang 147 Sách bài tập (SBT) Hình học 11

Bình chọn:
4 trên 2 phiếu

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi H là trực tâm của tam giác ABC và biết rằng A’H vuông góc với mặt phẳng (ABC). Chứng minh rằng:

Cho  hình lăng trụ tam giác ABC.A’B’C’. Gọi H là trực tâm của tam giác ABC và biết rằng A’H vuông góc với mặt phẳng (ABC). Chứng minh rằng:

a) AA ⊥ BC và AA’ ⊥ B’C’.

b) Gọi MM’ là giao tuyến của mặt phẳng (AHA’) với mặt bên BCC’B’, trong đó M ∈ BC và M’ ∈ B’C’. Chứng minh rằng tứ giác BCC’B là hình chữ nhật và MM’ là đường cao của hình chữ nhật đó.

Giải:

Quảng cáo

a) BCAH và BCAH vì AH(ABC)

BC(AHA)BCAA

BCAA vì BCBC

b) Ta có AABBCC mà BCAA nên tứ giác BCC’B’ là hình chữ nhật. Vì AA(BCCB) nên ta suy ra MMBC và MMBC hay MM’ là đường cao của hình chữ nhật BCC’B’.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Bài viết liên quan