Giả sử hàm số f(x) liên tục trên đoạn [a; b]. Chứng minh rằng: \(\int\limits_0^{{\pi \over 2}} {f(\sin x)dx = \int\limits_0^{{\pi \over 2}} {f(\cos x)dx} } \)
Hướng dẫn làm bài
Đổi biến số: \(x = {\pi \over 2} - t\) , ta được: \(\int\limits_0^{{\pi \over 2}} {f(\sin x)dx = - \int\limits_{{\pi \over 2}}^0 {f(\sin ({\pi \over 2} - t))dt = \int\limits_0^{{\pi \over 2}} {f(\cos t)dt} } } \)
Hay \(\int\limits_0^{{\pi \over 2}} {f(\sin x)dx = \int\limits_0^{{\pi \over 2}} {f(\cos x)dx} } \)
Sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục