Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.2 trang 168 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Cho ví dụ về một hàm số liên tục trên (a; b]

Cho ví dụ về một hàm số liên tục trên (a; b] và trên (b; c) nhưng không liên tục trên (a; c)

Giải:

Xét hàm số 

\(f\left( x \right) = \left\{ \matrix{
x + 2,\,{\rm{nếu}} \le {\rm{0}} \hfill \cr
{1 \over {{x^2}}}{\rm\,{,nếu }}\,\,x > 0 \hfill \cr} \right.\)

- Trường hợp \(x \le 0\)

\(f\left( x \right) = x + 2\) là hàmđa thức, liên tục trên R nên nó liên tục trên (-2; 0]

- Trường hợp x > 0

\(f\left( x \right) = {1 \over {{x^2}}}\) là hàm số phân thức hữu tỉ nên liên tục trên (2; 0) thuộc tập xác định của nó.

Như vậy \(f\left( x \right)\) liên tục trên (-2; 0] và trên (0; 2)

Tuy nhiên, vì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} {1 \over {{x^2}}} =  + \infty \) nên hàm số \(f\left( x \right)\) không cógiới hạn hữu hạn tại x = 0. Do đó, nó không liên tục tại x = 0. Nghĩa là không liên tục trên (-2; 2)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan