Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 32 trang 43 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 32 trang 43 SBT Hình học 10 Nâng cao

Trong đường tròn \(C(O ; R)\) cho hai dây cung \(AA’, BB’\) vuông góc với nhau ở điểm \(S\) và gọi \(M\) là trung điểm của \(AB\). Chứng minh rằng \(SM \bot A'B'\).

Giải

(h.38).

 

Xét tích vô hướng

\(\begin{array}{l}\overrightarrow {SM} .\overrightarrow {A'B'}\\  = \dfrac{1}{2}\left( {\overrightarrow {SA}  + \overrightarrow {SB} } \right)\left( {\overrightarrow {SB'}  - \overrightarrow {SA'} } \right)\\ = \dfrac{1}{2}\left( {\overrightarrow {SA} .\overrightarrow {SB'}  - \overrightarrow {SA} .\overrightarrow {SA'}  + \overrightarrow {SB} .\overrightarrow {SB'}  - \overrightarrow {SB} .\overrightarrow {SA'} } \right).\end{array}\)

Ta có

\(\overrightarrow {SA} .\overrightarrow {SB'}  = 0\) do \(SA \bot SB'\),

\(\overrightarrow {SB} .\overrightarrow {SA'}  = 0\) do \(SB \bot SA'\),

\(\overrightarrow {SA} .\overrightarrow {SA'}  = \overrightarrow {SB} .\overrightarrow {SB'} \).

Từ đó suy ra \(\overrightarrow {SM} .\overrightarrow {A'B'}  = 0\), nên \(SM \bot A'B'\).

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan