Bài 3.5 trang 171 sách bài tập (SBT) - Giải tích 12

Bình chọn:
3.5 trên 4 phiếu

Áp dụng phương pháp tính nguyên hàm từng phần, hãy tính:

Áp dụng phương pháp tính nguyên hàm từng phần, hãy tính:

a) \(\int {(1 - 2x){e^x}} dx\)                                           

b) \(\int {x{e^{ - x}}dx} \)

c) \(\int {x\ln (1 - x)dx} \)                                         

d) \(\int {x{{\sin }^2}xdx} \)

e) \(\int {\ln (x + \sqrt {1 + {x^2}} } )dx\)                         

g) \(\int {\sqrt x {{\ln }^2}xdx} \)

h) \(\int {x\ln {{1 + x} \over {1 - x}}dx} \)

Hướng dẫn làm bài

a) \((3 - 2x){e^x} + C\)                                                         

b) \( - (1 + x){e^{ - x}} + C\)

c) \({{{x^2}} \over 2}\ln (1 - x) - {1 \over 2}\ln (1 - x) - {1 \over 4}{(1 + x)^2} + C\).

d)  \({{{x^2}} \over 4} - {x \over 4}\sin 2x - {1 \over 8}\cos 2x + C\)   

HD: Đặt  u = x, dv = sin2xdx

e) \(x\ln (x + \sqrt {1 + {x^2}} ) - \sqrt {1 + {x^2}}  + C\)   .

HD: Đặt \(u = \ln (x + \sqrt {1 + {x^2}} )\)   và dv = dx

g) \({2 \over 3}{x^{{3 \over 2}}}({(\ln x)^2} - {4 \over 3}\ln x + {8 \over 9}) + C\)   

HD: Đặt  \(u = {\ln ^2}x;dv = \sqrt x dx\)

h) \(x - {{1 - {x^2}} \over 2}\ln {{1 + x} \over {1 - x}} + C\)           

HD: \(u = \ln {{1 + x} \over {1 - x}},dv = xdx\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Bài viết liên quan