Loigiaihay.com 2019

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.66 trang 134 sách bài tập (SBT) – Hình học 12

Bình chọn:
4 trên 2 phiếu

Cho hình chóp S.ABCD có đáy lầ hình thoi ABCD, AC cắt BD tại gốc tọa độ O. Biết A(2; 0; 0), B(0; 1; 0), . Gọi M là trung điểm cạnh SC.

Cho hình chóp S.ABCD có đáy là hình thoi ABCD, AC cắt BD tại gốc tọa độ O. Biết A(2; 0; 0), B(0; 1; 0),\(S(0;0;2\sqrt 2 )\) . Gọi M là trung điểm cạnh SC.

a) Viết phương trình mặt phẳng chứa SA và song song với BM.

b) Tính khoảng cách giữa hai đường thẳng SA và BM.

Hướng dẫn làm bài

a) Ta có  C(-2; 0; 0) và \(M( - 1;0;\sqrt 2 )\)

Gọi \((\alpha )\)  là mặt phẳng chứa SA và song song với BM. Hai vecto có giá song song hoặc nằm trên \((\alpha )\)  là \(\overrightarrow {SA}  = (2;0; - 2\sqrt 2 )\)  và \(\overrightarrow {BM}  = ( - 1; - 1;\sqrt 2 )\)

Suy ra vecto pháp tuyến của \((\alpha )\)   là : \(\overrightarrow n  = ( - 2\sqrt 2 ;0; - 2)\) hay \(\overrightarrow n ' = (\sqrt 2 ;0;1)\)

Mặt phẳng \((\alpha )\)  có phương trình: \(\sqrt 2 (x - 2) + z = 0\)  hay \(\sqrt 2 x + z - 2\sqrt 2  = 0\)

b) Ta có \(d\left( {SA,{\rm{ }}BM} \right){\rm{ }} = d(B;(\alpha )) = {{| - 2\sqrt 2 |} \over {\sqrt {2 + 1} }} = {{2\sqrt 2 } \over {\sqrt 3 }}\)

Vậy khoảng cách giữa hai đường thẳng SA và BM là  \({{2\sqrt 6 } \over 3}\).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.

Bài viết liên quan