Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.7 trang 102 sách bài tập (SBT) – Hình học 12

Bình chọn:
2.8 trên 5 phiếu

Cho hình tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, BD, AD, BC. Chứng minh rằng:

Cho hình tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, BD, AD, BC. Chứng minh rằng:

a) \(\overrightarrow {AB}  + \overrightarrow {CD}  = \overrightarrow {AD}  + \overrightarrow {CB}  = 2\overrightarrow {MN} \)                         

b) \(\overrightarrow {AB}  - \overrightarrow {CD}  = \overrightarrow {AC}  - \overrightarrow {BD}  = 2\overrightarrow {PQ} \)

Hướng dẫn làm bài:

a) Ta có  MPNQ là hình bình hành vì \(\overrightarrow {MP}  = \overrightarrow {QN}  = {1 \over 2}\overrightarrow {CD} \)  và \(\overrightarrow {MQ}  = \overrightarrow {PN}  = {1 \over 2}\overrightarrow {AB} \).

Do đó  \(\overrightarrow {MN}  = \overrightarrow {MQ}  + \overrightarrow {MP}  = {{\overrightarrow {AB} } \over 2} + {{\overrightarrow {CD} } \over 2}\)  hay \(2\overrightarrow {MN}  = \overrightarrow {AB}  + \overrightarrow {CD} \)        (1)

Mặt khác  \(\overrightarrow {AB}  = \overrightarrow {AD}  + \overrightarrow {DB} \)

            \(\overrightarrow {CD}  = \overrightarrow {CB}  + \overrightarrow {BD} \)     

Nên \(\overrightarrow {AB}  + \overrightarrow {CD}  = \overrightarrow {AD}  + \overrightarrow {CB} \)            (2)

Vì  \(\overrightarrow {DB}  =  - \overrightarrow {BD} \)

Từ (1) và (2) ta có: \(\overrightarrow {AB}  + \overrightarrow {CD}  = \overrightarrow {AD}  + \overrightarrow {CB}  = 2\overrightarrow {MN} \)  là đẳng thức cần chứng minh.

b) Ta có: \(\overrightarrow {PQ}  = \overrightarrow {MQ}  - \overrightarrow {MP}  = {{\overrightarrow {AB} } \over 2} - {{\overrightarrow {CD} } \over 2}\)

Do đó: \(2\overrightarrow {PQ}  = \overrightarrow {AB}  - \overrightarrow {CD} \)         (3)

Mặt khác:  \(\overrightarrow {AB}  = \overrightarrow {AC}  + \overrightarrow {CB} \)

                \(\overrightarrow {CD}  = \overrightarrow {BD}  - \overrightarrow {BC} \)  

Nên \(\overrightarrow {AB}  - \overrightarrow {CD}  = \overrightarrow {AC}  - \overrightarrow {BD} \)             (4)

Vì \(\overrightarrow {CB}  - ( - \overrightarrow {BC} ) = \overrightarrow 0 \)

Từ (3) và (4) ta suy ra \(\overrightarrow {AB}  - \overrightarrow {CD}  = \overrightarrow {AC}  - \overrightarrow {BD}  = 2\overrightarrow {PQ} \)  là đẳng thức cần chứng minh.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan