Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 38 trang 11 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 38 trang 11 SBT Hình học 10 Nâng cao

Cho tam giác \(ABC\) có trực tâm \(H\) và tâm đường tròn ngoại tiếp \(O\). Chứng minh rằng

a) \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH} \);

b) \(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = 2\overrightarrow {HO} \).

Giải

(h.20).

 

a) Gọi \(B’\) là điểm đối xứng với \(B\) qua \(O\), ta có \(B'C \bot BC\). Vì \(H\) là trực tâm tam giác \(ABC\) nên \(AH \bot BC\). Vậy \(AH//B’C.\)

Chứng minh tương tự ta có \(CH//B’A.\)

Vậy \(AB’CH\) là hình bình hành. Suy ra \(\overrightarrow {AH}  = \overrightarrow {B'C} \). Gọi \(D\) là trung điểm của \(BC\) thì \(OD\) là đường trung bình của tam giác \(BB’C\) nên \(\overrightarrow {B'C}  = 2\overrightarrow {OD} \). Vậy \(\overrightarrow {AH}  = 2\overrightarrow {OD} \).

Từ đó, ta có

\(\overrightarrow {OA}  = \overrightarrow {OH}  + \overrightarrow {HA}\)

\( = \overrightarrow {OH}  - \overrightarrow {AH}  = \overrightarrow {OH}  - 2\overrightarrow {OD}\)

\(  = \overrightarrow {OH}  - (\overrightarrow {OB}  + \overrightarrow {OC} ).\)

Suy ra \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH} .\)

b) Gọi G là trọng tâm tam giác ABC thì

\(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = 3\overrightarrow {HG}\)

\(  = 3\overrightarrow {HO}  + 3\overrightarrow {OG} \)

\(= 3\overrightarrow {HO}  + \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} .\)

Kết hợp với kết quả của câu a), ta có

\(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = 3\overrightarrow {HO}  + \overrightarrow {OH} \)

\(= 2\overrightarrow {HO} .\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan