Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 40 trang 11 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 40 trang 11 SBT Hình học 10 Nâng cao

Cho \(n\) điểm \(A_1, A_2, …,A_n\) và \(n\) số \(k_1, k_2, …,k_n\) mà \(k_1+ k_2+ …+k_n =k \ne 0\).

a) Chứng minh rằng có duy nhất một điểm \(G\) sao cho

\({k_1}\overrightarrow {G{A_1}}  + {k_2}\overrightarrow {G{A_2}}  + ... + {k_n}\overrightarrow {G{A_n}}  = \overrightarrow 0 \).

Điểm \(G\) như thế gọi là tâm tỉ cự của hệ  điểm \(A_i\), gắn với các hệ số \(k_i\). Trong trường hợp các hệ số \(k_i\) bằng nhau (và do đó có thể xem các \(k_i\) đều bằng 1), thì \(G\) gọi là trọng tân của hệ  điểm \(A_i\).

b) Chứng minh rằng nếu \(G\) là tâm tỉ cự nói ở câu a) thì với mọi điểm \(M\) bất kì, ta có

\(\overrightarrow {OG}  = \dfrac{1}{k}\left( {{k_1}\overrightarrow {O{A_1}}  + {k_2}\overrightarrow {O{A_2}}  + ... + {k_n}\overrightarrow {O{A_n}} } \right)\).

Giải

a) Ta lấy một điểm \(O\) nào đó thì

\(\begin{array}{l}{k_1}\overrightarrow {G{A_1}}  + {k_2}\overrightarrow {G{A_2}}  + ... + {k_n}\overrightarrow {G{A_n}}  = \overrightarrow 0 \\ \Leftrightarrow \,\,{k_1}(\overrightarrow {O{A_1}}  - \overrightarrow {OG} ) + {k_2}(\overrightarrow {O{A_2}}  - \overrightarrow {OG} ) \\+ ... + {k_n}(\overrightarrow {O{A_n}}  - \overrightarrow {OG} ) = \overrightarrow 0 \\ \Leftrightarrow \,\,\overrightarrow {OG}  = \dfrac{1}{k}({k_1}\overrightarrow {O{A_1}}  + {k_2}\overrightarrow {O{A_2}}  + ... + {k_n}\overrightarrow {O{A_n}} ).\end{array}\)

Vậy điểm \(G\) hoàn toàn xác định và duy nhất.

b) Suy ra từ câu a).

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan