Chứng minh rằng:
a) \(C_{n - 1}^{m - 1} = {m \over n}C_n^m,\,\,\,\left( {1 \le m \le n} \right);\)
b) \(C_{m + n}^m = C_{m + n - 1}^m + C_{m + n - 1}^n,\,\,\,\left( {1 \le m,n} \right)\)
Hướng dẫn.
Dùng công thức tính số tổ hợp.
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục