Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 4.4 trang 125 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Tìm số hạng đầu và công bội của cấp số nhân

Tìm số hạng đầu và công bội của cấp số nhân (un) biết 

a)

\(\left\{ \matrix{
{u_5} - {u_1} = 15 \hfill \cr
{u_4} - {u_2} = 6 \hfill \cr} \right.\);                           

b)

\(\left\{ \matrix{
{u_2} - {u_4} + {u_5} = 10 \hfill \cr
{u_3} - {u_5} + {u_6} = 20 \hfill \cr} \right.\) .

Giải:

a)      Ta có hệ 

\(\left\{ \matrix{
{u_1}{q^4} - {u_1} = 15 \hfill \cr
{u_1}{q^3} - {u_1}q = 6 \hfill \cr} \right.\)

hay 

\(\left\{ \matrix{
{u_1}\left( {{q^4} - 1} \right) = 15 \hfill \cr
{u_1}\left( {{q^3} - q} \right) = 6 \hfill \cr} \right.{\rm{ }} \)    (1)

Do (1) nên \(q \ne  \pm 1\) suy ra \({{15} \over 6} = {{{q^4} - 1} \over {q\left( {{q^2} - 1} \right)}} = {{{q^2} + 1} \over q}\)

Biến đổi về phương trình \(2{q^2} - 5q + 2 = 0\)

Giải ra được q = 2 và \(q = {1 \over 2}\)

Nếu q = 2 thì u1 = 1 

Nếu \(q = {1 \over 2}\) thì u= -16

b)      ĐS: \({u_1} = 1,q = 2\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan