Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 4.7 trang 126 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Cho dãy số

Cho dãy số 

\(\left( {{u_n}} \right):\left\{ \matrix{
{u_1} = 0 \hfill \cr
{u_{n + 1}} = {{2{u_n} + 3} \over {{u_n} + 4}}{\rm{ voi }}n \ge 1 \hfill \cr} \right.\)

a)      Lập dãy số \(\left( {{x_n}} \right)\) với \({x_n} = {{{u_n} - 1} \over {{u_n} + 3}}\). Chứng minh dãy số là cấp số nhân.

b)      Tìm công thức tính \({x_n},{u_n}\) theo n.

Giải:

Từ giả thiết có

\({u_{n + 1}}\left( {{u_n} + 4} \right) = 2{u_n} + 3\) hay \({u_{n + 1}}.{u_n} + 4{u_{n + 1}} = 2{u_n} + 3\)   (1)

Lập tỉ số \({{{x_{n + 1}}} \over {{x_n}}} = {{{u_{n + 1}} - 1} \over {{u_{n + 1}} + 3}}.{{{u_n} + 3} \over {{u_n} - 1}} = {{{u_{n + 1}}{u_n} + 3{u_{n + 1}} - {u_n} - 3} \over {{u_{n + 1}}{u_n} - {u_{n + 1}} + 3{u_n} - 3}}\)    (2)

Từ (1) suy ra \({u_{n + 1}}.{u_n} = 2{u_n} + 3 - 4{u_{n + 1}}\) thay vào (2) ta được

\({{{x_{n + 1}}} \over {{x_n}}} = {{2{u_n} + 3 - 4{u_{n + 1}} + 3{u_{n + 1}} - {u_n} - 3} \over {2{u_n} + 3 - 4{u_{n + 1}} - {u_{n + 1}} + 3{u_n} - 3}} = {{{u_n} - {u_{n + 1}}} \over {5\left( {{u_n} - {u_{n + 1}}} \right)}} = {1 \over 5}\)

Vậy \({x_{n + 1}} = {1 \over 5}{x_n}\) ta có cấp số nhân \(\left( {{x_n}} \right)\) với \(q = {1 \over 5}\) và \({x_1} =  - {1 \over 3}\)

Ta có \({x_n} =  - {1 \over 3}{\left( {{1 \over 5}} \right)^{n - 1}}\)

Từ đó tìm được \({u_n} = {{3{x_n} - 1} \over {1 - {x_n}}} = {{ - {{\left( {{1 \over 5}} \right)}^{n - 1}} - 1} \over {1 + {1 \over 3}{{\left( {{1 \over 5}} \right)}^{n - 1}}}} = {{{{\left( {{1 \over 5}} \right)}^{n - 1}} + 1} \over {{1 \over 3}{{\left( {{1 \over 5}} \right)}^{n - 1}} + 1}}\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan