Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 4.7 trang 126 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Cho dãy số

Cho dãy số 

\(\left( {{u_n}} \right):\left\{ \matrix{
{u_1} = 0 \hfill \cr
{u_{n + 1}} = {{2{u_n} + 3} \over {{u_n} + 4}}{\rm{ voi }}n \ge 1 \hfill \cr} \right.\)

a)      Lập dãy số \(\left( {{x_n}} \right)\) với \({x_n} = {{{u_n} - 1} \over {{u_n} + 3}}\). Chứng minh dãy số là cấp số nhân.

b)      Tìm công thức tính \({x_n},{u_n}\) theo n.

Giải:

Từ giả thiết có

\({u_{n + 1}}\left( {{u_n} + 4} \right) = 2{u_n} + 3\) hay \({u_{n + 1}}.{u_n} + 4{u_{n + 1}} = 2{u_n} + 3\)   (1)

Lập tỉ số \({{{x_{n + 1}}} \over {{x_n}}} = {{{u_{n + 1}} - 1} \over {{u_{n + 1}} + 3}}.{{{u_n} + 3} \over {{u_n} - 1}} = {{{u_{n + 1}}{u_n} + 3{u_{n + 1}} - {u_n} - 3} \over {{u_{n + 1}}{u_n} - {u_{n + 1}} + 3{u_n} - 3}}\)    (2)

Từ (1) suy ra \({u_{n + 1}}.{u_n} = 2{u_n} + 3 - 4{u_{n + 1}}\) thay vào (2) ta được

\({{{x_{n + 1}}} \over {{x_n}}} = {{2{u_n} + 3 - 4{u_{n + 1}} + 3{u_{n + 1}} - {u_n} - 3} \over {2{u_n} + 3 - 4{u_{n + 1}} - {u_{n + 1}} + 3{u_n} - 3}} = {{{u_n} - {u_{n + 1}}} \over {5\left( {{u_n} - {u_{n + 1}}} \right)}} = {1 \over 5}\)

Vậy \({x_{n + 1}} = {1 \over 5}{x_n}\) ta có cấp số nhân \(\left( {{x_n}} \right)\) với \(q = {1 \over 5}\) và \({x_1} =  - {1 \over 3}\)

Ta có \({x_n} =  - {1 \over 3}{\left( {{1 \over 5}} \right)^{n - 1}}\)

Từ đó tìm được \({u_n} = {{3{x_n} - 1} \over {1 - {x_n}}} = {{ - {{\left( {{1 \over 5}} \right)}^{n - 1}} - 1} \over {1 + {1 \over 3}{{\left( {{1 \over 5}} \right)}^{n - 1}}}} = {{{{\left( {{1 \over 5}} \right)}^{n - 1}} + 1} \over {{1 \over 3}{{\left( {{1 \over 5}} \right)}^{n - 1}} + 1}}\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan