Cho hàm số \(y = {{(2 + m)x + m - 1} \over {x + 1}}\) (1)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = 2.
b) Xác định các điểm có tọa độ nguyên trên đồ thị của (1) khi \(m \in Z\).
Hướng dẫn làm bài:
a) Với m = 2, ta có \(y = {{4x + 1} \over {x + 1}}\)
Đồ thị:
b) Ta có \(y = 2 + m - {3 \over {x + 1}}\)
Vậy để y nguyên với x và m nguyên thì x + 1 phải là ước của 3, tức là: \(x + 1 = \pm 1\) hoặc \(x + 1 = \pm 3\) hay \({x_1} = 0;{x_2} = - 2;{x_3} = - 4;{x_4} = 2\) .
Vậy các điểm thuộc đồ thị của (1) có tọa độ nguyên là A(0; m -1) ; B(-2; 5 + m); C(-4; 3 + m); D(2; m + 1).
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục