Một con súc sắc cân đối và đồng chất được gieo hai lần. Tính xác suất sao cho
a) Tổng số chấm của hai lần gieo là 6.
b) Ít nhất một lần gieo xuất hiện mặt một chấm.
Giải :
Rõ ràng: \(\Omega = \left\{ {\left( {i,j} \right):1 \le i,j \le 6} \right\}\)
Kí hiệu
A1: "Lần đầu xuất hiện mặt 1 chấm";
B1:“Lần thứ hai xuất hiện mặt 1 chấm” ;
C. “Tổng số chấm là 6” ;
D. “Mặt 1 chấm xuất hiệnít nhất 1 lần” ;
a) Ta có \(C = \left\{ {\left( {1,5} \right),\left( {5,1} \right),\left( {2,4} \right),\left( {4,2} \right),\left( {3,3} \right)} \right\}\), \({\rm{P}}\left( C \right) = {5 \over {36}}\)
b) Ta có A B độc lập và \(D = {A_1} \cup {B_1}\) nên
\(\eqalign{
& P\left( D \right) = P\left( {{A_1}} \right) + P\left( {{B_1}} \right) - P\left( {{A_1}{B_1}} \right) \cr
& = {1 \over 6} + {1 \over 6} - {1 \over 6}.{1 \over 6} = {{11} \over {36}}. \cr} \)
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục