Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 5.7 trang 76 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4.3 trên 3 phiếu

Trong kì kiểm tra chất lượng ở hai khối lớp, mỗi khối có 25% học sinh trượt Toán, 15% trượt Lí và 10% trượt Hoá. Từ mỗi khối chọn ngẫu nhiên một học sinh. Tính xác suất sao cho

Trong kì kiểm tra chất lượng ở hai khối lớp, mỗi khối có 25% học sinh trượt Toán, 15% trượt Lí và 10% trượt Hoá. Từ mỗi khối chọn ngẫu nhiên một học sinh. Tính xác suất sao cho

a)      Hai học sinh đó trượt Toán ;

b)      Hai học sinh đó đều bị trượt một môn nàođó ;

c)      Hai học sinh đó không bị trượt môn nào ;

d)     Có ít nhất một trong hai học sinh bị trượt ít nhất một môn.

Giải :

Kí hiệu \({A_1},{A_2},{A_3}\) lần lượt là các biến cố : Học sinh được chọn từ khối I trượt Toán, Lí, Hoá : \({B_1},{B_2},{B_3}\) lần lượt là các biến cố : Học sinh được chọn từ khối II trượt Toán, Lí, Hoá. Rõ ràng với mọi (i,j), các biến cố Ai và Bi độc lập.

a)      Ta có \(P\left( {{A_1}{B_1}} \right) = P\left( {{A_1}} \right)P\left( {{B_1}} \right) = {1 \over 4}.{1 \over 4} = {1 \over {16}}\)

b)      Xác suất cần tính là 

\(\eqalign{
& P\left( {\left( {{A_1} \cup {A_2} \cup {A_2}} \right) \cap \left( {{B_1} \cup {B_2} \cup {B_3}} \right)} \right) \cr
& = P\left( {{A_1} \cup {A_2} \cup {A_2}} \right).P\left( {{B_1} \cup {B_2} \cup {B_3}} \right) \cr
& = {1 \over 2}.{1 \over 2} = {1 \over 4} \cr} \)

c)      Đặt \(A = {A_1} \cup {A_2} \cup {A_3},B = {B_1} \cup {B_2} \cup {B_3}\)

Cần tính \(P\left( {\overline A  \cap \overline B } \right)\) Do \(\overline A \) và \(\overline B \) độc lập, ta có

\(\eqalign{
& P\left( {\overline A \cap \overline B } \right) = P\left( {\overline A } \right)P\left( {\overline B } \right) \cr
& = {\left[ {1 - P\left( A \right)} \right]^2} = {\left( {{1 \over 2}} \right)^2} = {1 \over 4}. \cr} \)

d)     Cần tính \(P\left( {A \cup B} \right)\)

Ta có

\(\eqalign{
& P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) \cr
& = {1 \over 2} + {1 \over 2} - {1 \over 4} = {3 \over 4}. \cr} \)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan