Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 84 trang 117 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 84 trang 117 SBT Hình học 10 Nâng cao

Cho đường tròn \((C)\) có tâm \(O\) bán kính \(R\) và đường thẳng \(\Delta \) không cắt \((C)\). Chứng minh rằng tập hợp tâm các đường tròn tiếp xúc với \(\Delta \) và tiếp xúc ngoài với \((C)\) nằm trên một parabol. Tìm tiêu điểm và đường chuẩn của parabol đó.

Giải

(h.119).

 

 Kẻ \(OH\) vuông góc với \(\Delta \) và kéo dài \(OH\) (về phía \(H\)) một đoạn \(HK=R.\)

Dựng đường thẳng \(\Delta '\) đi qua \(K\) và song song với \(\Delta \). Khi đó \(\Delta '\) cố định và không đi qua \(O\).

Xét đường tròn \((C’)\) tâm \(I\) tiếp xúc ngoài với \((C)\) tại \(T\) và tiếp xúc với \(\Delta \) tại \(M\). Gọi \(N\) là giao điểm của đường thẳng \(IM\) và \(\Delta '\).

Ta có: \(IO = OT + TI \)

\(= R + IM = IN = d(I;\Delta ')\).

Vậy \(I\) nằm trên paprbol nhận \(O\) làm tiêu điểm và \(\Delta '\) làm đường chuẩn.

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan