Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 12 trang 158 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
3.8 trên 12 phiếu

Cho tam giác ABC cân tại A, nội tiếp đường tròn (O).

Câu 12 trang 158 Sách Bài Tập (SBT) Toán 9 Tập 1

Cho tam giác ABC cân tại A, nội tiếp đường tròn (O). Đường cao AH cắt đường tròn ở D.

a) Vì sao AD là đường kính của đường tròn (O)?

b) Tính số đo góc ACD.

c) Cho BC = 24cm, AC = 20cm. Tính đường cao AH và bán kính đường tròn (O).

Gợi ý làm bài

Tam giác ABC cân tại A nên AH là đường cao đồng thời cũng là đường trung trực của BC.

Vì O là tâm của đường tròn ngoại tiếp tam giác ABC nên O nằm trên đường trung trực của BC hay O  thuộc AD.

Suy ra AD là đường kính của (O).

b) Tam giác ACD nội tiếp trong (O) có AD là đường kính nên suy ra \(\widehat {ACD} = 90^\circ \)

c) Ta có: 

\(\eqalign{
& AH \bot BC \cr
& \Rightarrow HB = HC = {{BC} \over 2} = {{24} \over 2} = 12\,(cm) \cr} \)

Áp dụng định lí Pi-ta-go vào tam giác vuông ACH ta có:

\(A{C^2} = A{H^2} + H{C^2}\)

Suy ra:

\(\eqalign{
& A{H^2} = A{C^2} - H{C^2} \cr
& = {20^2} - {12^2} = 400 - 144 = 256 \cr} \)

\(AH = 16\,(cm)\)

Tam giác ACD vuông tại C theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

\(\eqalign{
& A{C^2} = AH.AD \cr
& \Rightarrow AD = {{A{C^2}} \over {AH}} = {{{{20}^2}} \over {16}} = 25\,(cm) \cr} \)

Vậy bán kính của đường tròn (O) là : 

\(R = {{AD} \over 2} = {{25} \over 2} = 12,5\,(cm)\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan