Lưu lượng xe ô tô vào đường hầm được cho bởi công thức
\(f(v) = {{290,4v} \over {0,36{v^2} + 13,2v + 264}}\) (xe/giây)
Trong đó v (km/h) là vận tốc trung bình của các xe khi đi vào đường hầm.
Tính vận tốc trung bình của các xe khi vào đường hầm sao cho lưu lượng xe là lớn nhất và tính giá trị lớn nhất đó.
Giải
\(f'(v) = 290,4.{{ - 0,36{v^2} + 264} \over {{{(0,36{v^2} + 13,2v + 264)}^2}}}.v > 0\)
\(f'(v) = 0 \Leftrightarrow v = {{\sqrt {264} } \over {0,6}}\)
f đạt giá trị lớn nhất khi \(v = {{\sqrt {264} } \over {0,6}} \approx 27,08\) (km/h)
\(f({{\sqrt {264} } \over {0,6}}) \approx f(27,08) \approx 8,9\)
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục