Xem thêm: Ôn tập chương I - Hàm số lượng giác và phương trình lượng giác
Trong khoảng \(\left( {0;{\pi \over 2}} \right),\) phương trình \({\sin ^2}4x + 3\sin 3x\cos 4x - 4{\cos ^2}4x = 0\) có:
(A) 1 nghiệm (B) 2 nghiệm
(C) 3 nghiệm (D) 4 nghiệm
Giải
Chọn phương án (D)
Đặt \(y = 4x\) ta có \(0 < x < {\pi \over 2} \Rightarrow 0 < y < 2\pi .\) Phương trình đã cho dẫn đến phương trình
\({\tan ^2}y + 3\tan y - 4 = 0\,\,\,\,\,\,\,\,hay\,\,\,\left[ \matrix{
\tan y = 1 \hfill \cr
\tan y = - 4 \hfill \cr} \right.\)
Trong khoảng \(\left( {0;2\pi } \right),\) mỗi phương trình \(\tan y = 1\) và \(\tan y = - 4\) đều có hai nghiệm.
sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục