Cho hai phân thức \({1 \over {{x^2} - 4x - 5}}\) và \({2 \over {{x^2} - 2x - 3}}\)
Chứng tỏ rằng có thể chọn đa thức \({x^3} - 7{x^2} + 7x + 15\) làm mẫu thức chung để quy đồng mẫu thức hai phân thức đã cho. Hãy quy đồng mẫu thức.
Giải:
Suy ra: \({x^3} - 7{x^2} + 7x + 15 = \left( {{x^2} - 4x - 5} \right)\left( {x - 3} \right)\)
Suy ra: \({x^3} - 7{x^2} + 7x + 15 = \left( {{x^2} - 2x - 3} \right)\left( {x - 5} \right)\)
\(\eqalign{ & {1 \over {{x^2} - 4x - 5}} \cr&\;\;= {{1.\left( {x - 3} \right)} \over {\left( {{x^2} - 4x - 5} \right).\left( {x - 3} \right)}}\cr&\;\; = {{x - 3} \over {{x^3} - 7{x^2} + 7x + 15}} \cr & {2 \over {{x^2} - 2x - 3}} = {{2.\left( {x - 5} \right)} \over {\left( {{x^2} - 2x - 3} \right)\left( {x - 5} \right)}} \cr&\;\;= {{2\left( {x - 5} \right)} \over {{x^3} - 7{x^2} + 7x + 15}} \cr} \)
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục