Cho hình chữ nhật ABCD. Đường phân giác của góc B cắt đường chéo AC thành hai đoạn \(4{2 \over 7}m\) và \(5{5 \over 7}m\). Tính các kích thước của hình chữ nhật.
Gợi ý làm bài:
Trong tam giác ABC, gọi giao điểm đường phân giác của góc \(\widehat {ABC}\) với cạnh AC là E.
Theo đề bài ta có:
\(AE = 4{2 \over 7}m,\,EC = 5{5 \over 7}m.\)
Theo tính chất của đường phân giác, ta có: \({{AE} \over {EC}} = {{AB} \over {BC}}\)
Suy ra: \({{AB} \over {BC}} = {{4{2 \over 7}} \over {5{5 \over 7}}} = {{{{30} \over 7}} \over {{{40} \over 7}}} = {3 \over 4}\)
Suy ra: \({{AB} \over 3} = {{BC} \over 4} \Rightarrow {{A{B^2}} \over 9} = {{B{C^2}} \over {16}}\)
Áp dụng định lý Pi-ta-go vào tam giác vuông ABC, ta có:
\(A{C^2} = A{B^2} + B{C^2}\)
Mà \(AC = AE + EC\) nên:
\(\eqalign{
& A{B^2} + B{C^2} = {(AE + EC)^2} \cr
& = {\left( {4{2 \over 7} + 5{5 \over 7}} \right)^2} = {\left( {{{30} \over 7} + {{40} \over 7}} \right)^2} = {10^2} = 100 \cr} \)
Mà :
\(\eqalign{
& {{A{B^2}} \over 9} = {{B{C^2}} \over {16}} = {{A{B^2} + B{C^2}} \over {9 + 16}} \cr
& = {{A{B^2} + B{C^2}} \over {25}} = {{100} \over {25}} = 4 \cr} \)
Suy ra: \(A{B^2} = 9.4 = 36 \Rightarrow AB = \sqrt {36} = 6\left( m \right)\)
\(B{C^2} = 16.4 = 64 \Rightarrow BC = \sqrt {64} = 8\left( m \right)\)
Vậy: \(AB = CD = 6m\)
\(BC = AD = 8m\)
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục