Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 23 trang 10 Sách bài tập (SBT) Toán 9 tập 2

Bình chọn:
3.9 trên 10 phiếu

Giải các hệ phương trình.

Giải các hệ phương trình:

\(a)\left\{ {\matrix{
{\left( {x - 3} \right)\left( {2y + 5} \right) = \left( {2x + 7} \right)\left( {y - 1} \right)} \cr
{\left( {4x + 1} \right)\left( {3y - 6} \right) = \left( {6x - 1} \right)\left( {2y + 3} \right)} \cr} } \right.\)

\(b)\left\{ {\matrix{
{\left( {x + y} \right)\left( {x - 1} \right) = \left( {x - y} \right)\left( {x + 1} \right) + 2xy} \cr
{\left( {y - x} \right)\left( {y + 1} \right) = \left( {y + x} \right)\left( {y - 2} \right) - 2xy} \cr} } \right.\)

Giải


a)

\(\eqalign{
& \left\{ {\matrix{
{\left( {x - 3} \right)\left( {2y + 5} \right) = \left( {2x + 7} \right)\left( {y - 1} \right)} \cr
{\left( {4x + 1} \right)\left( {3y - 6} \right) = \left( {6x - 1} \right)\left( {2y + 3} \right)} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{2xy + 5y - 6y - 15 = 2xy - 2x + 7y - 7} \cr 
{12xy - 24x + 3y - 6 = 12xy + 18x - 2y - 3} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{7x - 13y = 8} \cr 
{ - 42x + 5y = 3} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {{42x + 3} \over 5}} \cr 
{7x - 13.{{42x + 3} \over 5} = 8} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {{42x + 3} \over 5}} \cr 
{35x - 546x - 39 = 40} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {{42x + 3} \over 5}} \cr 
{ - 511x = 79} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {{42x + 3} \over 5}} \cr 
{x = - {{79} \over {511}}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - {{51} \over {73}}} \cr 
{x = - {{79} \over {511}}} \cr} } \right. \cr} \)

Giá trị của x và y thỏa mãn điều kiện.

Vậy hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( { - {{79} \over {511}}; - {{51} \over {73}}} \right)\)

b)

\(\eqalign{
& \left\{ {\matrix{
{\left( {x + y} \right)\left( {x - 1} \right) = \left( {x - y} \right)\left( {x + 1} \right) + 2xy} \cr
{\left( {y - x} \right)\left( {y + 1} \right) = \left( {y + x} \right)\left( {y - 2} \right) - 2xy} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{{x^2} - x + xy - y = {x^2} + x - xy - y + 2xy} \cr 
{{y^2} + y - xy - x = {y^2} - 2y + xy - 2x - 2xy} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{ - x - y = x - y} \cr 
{y - x = - 2x - 2y} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{2x = 0} \cr 
{x + 3y = 0} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 0} \cr 
{3y = 0} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 0} \cr 
{y = 0} \cr} } \right. \cr} \)

Hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {0;0} \right)\).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan