Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 25 trang 11 Sách bài tập (SBT) Toán 9 tập 2

Bình chọn:
4 trên 45 phiếu

Giải các hệ phương trình sau bằng phương pháp cộng đại số.

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

\(a)\left\{ {\matrix{
{2x - 11y = - 7} \cr
{10x + 11y = 31} \cr} } \right.\)

\(b)\left\{ {\matrix{
{4x + 7y = 16} \cr
{4x - 3y = - 24} \cr} } \right.\)

\(c)\left\{ {\matrix{
{0,35x + 4y = - 2,6} \cr
{0,75x - 6y = 9} \cr} } \right.\)

\(d)\,\,\left\{ \begin{array}{l}
\sqrt 2 x + 2\sqrt 3 y = 5\\
3\sqrt 2 x - \sqrt 3 y = \dfrac{9}{2}
\end{array} \right.\)

\(e)\left\{ {\matrix{
{10x - 9y = 8} \cr
{15x + 21y = 0,5} \cr} } \right.\)

\(f)\left\{ {\matrix{
{3,3x + 4,2y = 1} \cr
{9x + 14y = 4} \cr} } \right.\)

Giải

a)

\(\eqalign{
& \left\{ {\matrix{
{2x - 11y = - 7} \cr
{10x + 11y = 31} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{12x = 24} \cr
{2x - 11y = - 7} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr
{2.2 - 11y = - 7} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr
{ - 11y = - 11} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr
{y = 1} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = (2; 1)

b)

\(\eqalign{
& \left\{ {\matrix{
{4x + 7y = 16} \cr
{4x - 3y = - 24} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{10y = 40} \cr 
{4x - 3y = - 24} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 4} \cr 
{4x - 3.4 = - 24} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 4} \cr 
{4x = - 12} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 4} \cr 
{x = - 3} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = (-3; 4)

c)

\(\eqalign{
& \left\{ {\matrix{
{0,35x + 4y = - 2,6} \cr
{0,75x - 6y = 9} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{1,05x + 12y = - 7,8} \cr 
{1,5x - 12y = 18} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{2,55x = 10,2} \cr 
{0,75x - 6y = 9} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 4} \cr 
{0,75.4 - 6y = 9} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 4} \cr 
{ - 6y = 6} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 4} \cr 
{y = - 1} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = (4; -1)

d)

\(\eqalign{
& \left\{ {\matrix{
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr
{3\sqrt 2 x - \sqrt 3 y = {9 \over 2}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr 
{6\sqrt 2 x - 2\sqrt 3 y = 9} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{7\sqrt 2 x = 14} \cr 
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = {{14} \over {7\sqrt 2 }}} \cr 
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = \sqrt 2 } \cr 
{\sqrt 2 .\sqrt 2 + 2\sqrt 3 y = 5} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = \sqrt 2 } \cr 
{2\sqrt 3 y = 3} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = \sqrt 2 } \cr 
{y = {{\sqrt 3 } \over 2}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( {\sqrt 2 ;{{\sqrt 3 } \over 2}} \right)\)

e)

\(\eqalign{
& \left\{ {\matrix{
{10x - 9y = 8} \cr
{15x + 21y = 0,5} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{30x - 27y = 24} \cr 
{30x + 42y = 1} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{69y = - 23} \cr 
{10x - 9y = 8} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - {1 \over 3}} \cr 
{10x - 9.\left( { - {1 \over 3}} \right) = 8} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - {1 \over 3}} \cr 
{10x = 5} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - {1 \over 3}} \cr 
{x = {1 \over 2}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( {{1 \over 2}; - {1 \over 3}} \right)\)

f)

\(\eqalign{
& \left\{ {\matrix{
{3,3x + 4,2y = 1} \cr
{9x + 14y = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{33x + 42y = 10} \cr 
{27x + 42y = 12} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{6x = - 2} \cr 
{9x + 14y = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = - {1 \over 3}} \cr 
{9.\left( { - {1 \over 3}} \right) + 14y = 4} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = - {1 \over 3}} \cr 
{14y = 7} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = - {1 \over 3}} \cr 
{y = {1 \over 2}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( { - {1 \over 3};{1 \over 2}} \right)\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan