Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 24 trang 10 Sách bài tập (SBT) Toán 9 tập 2

Bình chọn:
3.3 trên 27 phiếu

Giải các hệ phương trình sau bằng cách đặt ẩn số phụ.

Giải các hệ phương trình sau bằng cách đặt ẩn số phụ:

a)

\(\left\{ {\matrix{
{{1 \over x} + {1 \over y} = {4 \over 5}} \cr
{{1 \over x} - {1 \over y} = {1 \over 5}} \cr} } \right.\)

b) 

\(\left\{ {\matrix{
{{{15} \over x} - {7 \over y} = 9} \cr
{{4 \over x} + {9 \over y} = 35} \cr} } \right.\)

c)

\(\left\{ {\matrix{
{{1 \over {x + y}} + {1 \over {x - y}} = {5 \over 8}} \cr
{{1 \over {x + y}} - {1 \over {x - y}} = - {3 \over 8}} \cr} } \right.\)

d)

\(\left\{ {\matrix{
{{4 \over {2x - 3y}} + {5 \over {3x + y}} = - 2} \cr
{{3 \over {3x + y}} - {5 \over {2x - 3y}} = 21} \cr} } \right.\)

e)

\(\left\{ {\matrix{
{{7 \over {x - y + 2}} - {5 \over {x + y - 1}} = 4,5} \cr
{{3 \over {x - y + 2}} + {2 \over {x + y - 1}} = 4} \cr} } \right.\)

Giải

a) Đặt \({1 \over x} = a;{1 \over y} = b\) điều kiện \(x \ne 0;y \ne 0.\) Ta có hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{a + b = {4 \over 5}} \cr
{a - b = {1 \over 5}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = b + {1 \over 5}} \cr 
{b + {1 \over 5} + b = {4 \over 5}} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = b + {1 \over 5}} \cr 
{2b = {3 \over 5}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = b + {1 \over 5}} \cr 
{b = {3 \over {10}}} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = {1 \over 2}} \cr 
{b = {3 \over {10}}} \cr} } \right. \cr} \)

Suy ra: 

\(\left\{ {\matrix{
{{1 \over x} = {1 \over 2}} \cr
{{1 \over y} = {3 \over {10}}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr 
{y = {{10} \over 3}} \cr} } \right.\)

Vậy hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {2;{{10} \over 3}} \right)\)

b) Đặt \({1 \over x} = a;{1 \over y} = b\) điều kiện \(x \ne 0;y \ne 0\) ta có hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{15a - 7b = 9} \cr
{4a + 9b = 35} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = {{15a - 9} \over 7}} \cr 
{4a + 9.{{15a - 9} \over 7} = 35} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = {{15a - 9} \over 7}} \cr 
{28a + 135a - 81 = 245} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = {{15a - 9} \over 7}} \cr 
{163a = 326} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = {{15a - 9} \over 7}} \cr 
{a = 2} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 3} \cr 
{a = 2} \cr} } \right. \cr} \)

Suy ra: 

\(\left\{ {\matrix{
{{1 \over x} = 2} \cr
{{1 \over y} = 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = {1 \over 2}} \cr 
{y = {1 \over 3}} \cr} } \right.\)

Hai giá trị x, y thỏa mãn điều kiện

Vậy hệ phương trình có nghiệm: (x; y) = \(\left( {{1 \over 2};{1 \over 3}} \right)\)

c) Đặt \({1 \over {x + y}} = a;{1 \over {x - y}} = b.\) Điều kiện \(x \ne  \pm y\). Ta có hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{a + b = {5 \over 8}} \cr
{a - b = - {3 \over 8}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = b - {3 \over 8}} \cr 
{b - {3 \over 8} + b = {5 \over 8}} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = b - {3 \over 8}} \cr 
{b = {1 \over 2}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = {1 \over 8}} \cr 
{b = {1 \over 2}} \cr} } \right. \cr} \)

Suy ra:

\(\eqalign{
& \left\{ {\matrix{
{{1 \over {x + y}} = {1 \over 8}} \cr
{{1 \over {x - y}} = {1 \over 2}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x + y = 8} \cr 
{x - y = 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = y + 2} \cr 
{y + 2 + y = 8} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = y + 2} \cr 
{2y = 6} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = y + 2} \cr 
{y = 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 5} \cr 
{y = 3} \cr} } \right. \cr} \)

Hai giá trị x, y thỏa mãn điều kiện 

Vậy hệ phương trình có nghiệm: (x; y) =  (5; 3).

d) Đặt \({1 \over {2x - 3y}} = a;{1 \over {3x + y}} = b.\) Điều kiện \(x \ne {3 \over 2}y;x \ne  - {1 \over 3}y.\) Ta có hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{4a + 5b = - 2} \cr
{3b - 5a = 21} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = {{5a + 21} \over 3}} \cr 
{4a + 5.{{5a + 21} \over 3} = - 2} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = {{5a + 21} \over 3}} \cr 
{12a + 25a + 105 = - 6} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = {{5a + 21} \over 3}} \cr 
{37a = - 111} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = {{5a + 21} \over 3}} \cr 
{a = - 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 2} \cr 
{a = - 3} \cr} } \right. \cr} \)

Suy ra:

\(\eqalign{
& \left\{ {\matrix{
{{1 \over {2x - 3y}} = - 3} \cr
{{1 \over {3x + y}} = 2} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{2x - 3y = - {1 \over 3}} \cr 
{3x + y = {1 \over 2}} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - 3x} \cr 
{2x - 3\left( {{1 \over 2} - 3x} \right) = {1 \over 3}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - 3x} \cr 
{2x + 9x = - {1 \over 3} + {3 \over 2}} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - 3x} \cr 
{11x = {7 \over 6}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - 3x} \cr 
{x = {7 \over {66}}} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - {7 \over {22}}} \cr 
{x = {7 \over {66}}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = {2 \over {11}}} \cr 
{x = {7 \over {66}}} \cr} } \right. \cr} \)

Hai giá trị \(x = {7 \over {66}};y = {2 \over {11}}\) thỏa mãn điều kiện

Vậy hệ phương trình có nghiệm: (x; y) = \(\left( {{7 \over {66}};{2 \over {11}}} \right)\)

e) Đặt \({1 \over {x - y + 2}} = a;{1 \over {x + y - 1}} = b.\) Điều kiện \(x - y + 2 \ne 0;x + y - 1 \ne 0.\)

Ta có hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{7a - 5b = 4,5} \cr
{3a + 2b = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{b = {{4 - 3a} \over 2}} \cr 
{7a - 5.{{4 - 3a} \over 2} = 4,5} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = {{4 - 3a} \over 2}} \cr 
{14a - 20 + 15a = 9} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = {{4 - 3a} \over 2}} \cr 
{29a = 29} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = {{4 - 3a} \over 2}} \cr 
{a = 1} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = {1 \over 2}} \cr 
{a = 1} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{{1 \over {x - y + 2}} = 1} \cr 
{{1 \over {x + y - 1}} = {1 \over 2}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x - y + 2 = 1} \cr 
{x + y - 1 = 2} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = y - 1} \cr 
{y - 1 + y - 1 = 2} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = y - 1} \cr 
{2y = 4} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = y - 1} \cr 
{y = 2} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr 
{y = 2} \cr} } \right. \cr} \)

 

Giá trị của x và y thỏa mãn điều kiện

Vậy hệ phương trình có nghiệm: (x; y) =  (1; 2).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan