Giải các hệ phương trình sau bằng cách đặt ẩn số phụ:
a)
\(\left\{ {\matrix{
{{1 \over x} + {1 \over y} = {4 \over 5}} \cr
{{1 \over x} - {1 \over y} = {1 \over 5}} \cr} } \right.\)
b)
\(\left\{ {\matrix{
{{{15} \over x} - {7 \over y} = 9} \cr
{{4 \over x} + {9 \over y} = 35} \cr} } \right.\)
c)
\(\left\{ {\matrix{
{{1 \over {x + y}} + {1 \over {x - y}} = {5 \over 8}} \cr
{{1 \over {x + y}} - {1 \over {x - y}} = - {3 \over 8}} \cr} } \right.\)
d)
\(\left\{ {\matrix{
{{4 \over {2x - 3y}} + {5 \over {3x + y}} = - 2} \cr
{{3 \over {3x + y}} - {5 \over {2x - 3y}} = 21} \cr} } \right.\)
e)
\(\left\{ {\matrix{
{{7 \over {x - y + 2}} - {5 \over {x + y - 1}} = 4,5} \cr
{{3 \over {x - y + 2}} + {2 \over {x + y - 1}} = 4} \cr} } \right.\)
Giải
a) Đặt \({1 \over x} = a;{1 \over y} = b\) điều kiện \(x \ne 0;y \ne 0.\) Ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{a + b = {4 \over 5}} \cr
{a - b = {1 \over 5}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = b + {1 \over 5}} \cr
{b + {1 \over 5} + b = {4 \over 5}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = b + {1 \over 5}} \cr
{2b = {3 \over 5}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = b + {1 \over 5}} \cr
{b = {3 \over {10}}} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = {1 \over 2}} \cr
{b = {3 \over {10}}} \cr} } \right. \cr} \)
Suy ra:
\(\left\{ {\matrix{
{{1 \over x} = {1 \over 2}} \cr
{{1 \over y} = {3 \over {10}}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr
{y = {{10} \over 3}} \cr} } \right.\)
Vậy hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {2;{{10} \over 3}} \right)\)
b) Đặt \({1 \over x} = a;{1 \over y} = b\) điều kiện \(x \ne 0;y \ne 0\) ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{15a - 7b = 9} \cr
{4a + 9b = 35} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{15a - 9} \over 7}} \cr
{4a + 9.{{15a - 9} \over 7} = 35} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{15a - 9} \over 7}} \cr
{28a + 135a - 81 = 245} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{15a - 9} \over 7}} \cr
{163a = 326} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{15a - 9} \over 7}} \cr
{a = 2} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 3} \cr
{a = 2} \cr} } \right. \cr} \)
Suy ra:
\(\left\{ {\matrix{
{{1 \over x} = 2} \cr
{{1 \over y} = 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = {1 \over 2}} \cr
{y = {1 \over 3}} \cr} } \right.\)
Hai giá trị x, y thỏa mãn điều kiện
Vậy hệ phương trình có nghiệm: (x; y) = \(\left( {{1 \over 2};{1 \over 3}} \right)\)
c) Đặt \({1 \over {x + y}} = a;{1 \over {x - y}} = b.\) Điều kiện \(x \ne \pm y\). Ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{a + b = {5 \over 8}} \cr
{a - b = - {3 \over 8}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = b - {3 \over 8}} \cr
{b - {3 \over 8} + b = {5 \over 8}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = b - {3 \over 8}} \cr
{b = {1 \over 2}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = {1 \over 8}} \cr
{b = {1 \over 2}} \cr} } \right. \cr} \)
Suy ra:
\(\eqalign{
& \left\{ {\matrix{
{{1 \over {x + y}} = {1 \over 8}} \cr
{{1 \over {x - y}} = {1 \over 2}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x + y = 8} \cr
{x - y = 2} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = y + 2} \cr
{y + 2 + y = 8} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = y + 2} \cr
{2y = 6} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = y + 2} \cr
{y = 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 5} \cr
{y = 3} \cr} } \right. \cr} \)
Hai giá trị x, y thỏa mãn điều kiện
Vậy hệ phương trình có nghiệm: (x; y) = (5; 3).
d) Đặt \({1 \over {2x - 3y}} = a;{1 \over {3x + y}} = b.\) Điều kiện \(x \ne {3 \over 2}y;x \ne - {1 \over 3}y.\) Ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{4a + 5b = - 2} \cr
{3b - 5a = 21} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = {{5a + 21} \over 3}} \cr
{4a + 5.{{5a + 21} \over 3} = - 2} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{5a + 21} \over 3}} \cr
{12a + 25a + 105 = - 6} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{5a + 21} \over 3}} \cr
{37a = - 111} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{5a + 21} \over 3}} \cr
{a = - 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 2} \cr
{a = - 3} \cr} } \right. \cr} \)
Suy ra:
\(\eqalign{
& \left\{ {\matrix{
{{1 \over {2x - 3y}} = - 3} \cr
{{1 \over {3x + y}} = 2} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{2x - 3y = - {1 \over 3}} \cr
{3x + y = {1 \over 2}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - 3x} \cr
{2x - 3\left( {{1 \over 2} - 3x} \right) = {1 \over 3}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - 3x} \cr
{2x + 9x = - {1 \over 3} + {3 \over 2}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - 3x} \cr
{11x = {7 \over 6}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - 3x} \cr
{x = {7 \over {66}}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - {7 \over {22}}} \cr
{x = {7 \over {66}}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = {2 \over {11}}} \cr
{x = {7 \over {66}}} \cr} } \right. \cr} \)
Hai giá trị \(x = {7 \over {66}};y = {2 \over {11}}\) thỏa mãn điều kiện
Vậy hệ phương trình có nghiệm: (x; y) = \(\left( {{7 \over {66}};{2 \over {11}}} \right)\)
e) Đặt \({1 \over {x - y + 2}} = a;{1 \over {x + y - 1}} = b.\) Điều kiện \(x - y + 2 \ne 0;x + y - 1 \ne 0.\)
Ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{7a - 5b = 4,5} \cr
{3a + 2b = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{b = {{4 - 3a} \over 2}} \cr
{7a - 5.{{4 - 3a} \over 2} = 4,5} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{4 - 3a} \over 2}} \cr
{14a - 20 + 15a = 9} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = {{4 - 3a} \over 2}} \cr
{29a = 29} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{4 - 3a} \over 2}} \cr
{a = 1} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = {1 \over 2}} \cr
{a = 1} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{{1 \over {x - y + 2}} = 1} \cr
{{1 \over {x + y - 1}} = {1 \over 2}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x - y + 2 = 1} \cr
{x + y - 1 = 2} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = y - 1} \cr
{y - 1 + y - 1 = 2} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = y - 1} \cr
{2y = 4} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = y - 1} \cr
{y = 2} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr
{y = 2} \cr} } \right. \cr} \)
Giá trị của x và y thỏa mãn điều kiện
Vậy hệ phương trình có nghiệm: (x; y) = (1; 2).
Sachbaitap.com
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục