Cho đường tròn (O; R), dây AB khác đường kính. Vẽ về hai phía của AB các dây AC, AD. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ B và AC và AD. Chứng minh rằng:
a) Bốn điểm A, H, B, K thuộc cùng một đường tròn;
b) HK < 2R.
Giải:
a) Ta có: \(\widehat {AHB} = \widehat {AKB} = {90^o}\)
Do đó H và K cùng nhìn AB dưới 1 góc \(90^o\) không đổi nên bốn điểm A, H, B, K cùng thuộc một đường tròn đường kính AB.
b) Gọi I là trung điểm của AB.
HK là dây cung không đi qua tâm \(I\) của \(\left( {I,\dfrac{{AB}}{2}} \right)\)
Do đó: \(HK < AB\) (1)
Mặt khác: AB là dây cung không đi qua tâm O của \((O,R)\) nên \(AB<2R\) (2)
Từ (1) và (2) ta có: \(HK < AB < 2R\).
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục