Cho hình 74, trong đó MN = PQ. Chứng minh rằng:
a) AE = AF; b) AN = AQ.
Giải:
a) Nối OA
Ta có: MN = PQ (gt)
Suy ra: OE = OF (hai dây bằng nhau cách đều tâm)
Xét hai tam giác OAE và OAF, ta có:
^OEA=^OFA=90∘
OA chung
OE = OF ( chứng minh trên)
Suy ra: ∆OAE = ∆OAF (cạnh huyền, cạnh góc vuông)
Suy ra: AE = AF
b) Ta có: OE ⊥ MN (gt)
Suy ra: EN=12MN (đường kính vuông góc với dây cung) (1)
OF ⊥PQ (gt)
Suy ra: FQ=12PQ (đường kính vuông góc với dây cung) (2)
Mặt khác: MN = PQ (gt) (3)
Từ (1), (2) và (3) suy ra: EN = FQ (4)
Mà AE = QF ( chứng minh trên) (5)
Từ (4) và (5) suy ra: AN + NE = AQ + QF (6)
Từ (5) và (6) suy ra: AN = AQ.
Sachbaitap.com
>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com
>> Chi tiết khoá học xem: TẠI ĐÂY
Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục