Cho đa giác đều có 2n cạnh \({A_1}{A_2}...{A_{2n}}\) nội tiếp trong một đường tròn. Biết rằng tam giác có đỉnh lấy trong 2n điểm \({A_1}...{A_{2n}}\) nhiều gấp 20 lần số hình chữ nhật có đỉnh lấy trong 2n điểm \({A_1}{A_2}...{A_{2n}}\). Tìm n.
Giải
Có \(C_{2n}^3\) tam giác. Mỗi hình chữ nhật được xác định bởi việc chọn 2 trong số n đỉnh ở nửa đường tròn. Vậy có \(C_n^2\) hình chữ nhật. Ta có phương trình \(20C_n^2 = C_{2n}^3\)
\(\Rightarrow n=8\).
sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục