Tính tổng của tất cả các số có 5 chữ số được viết từ các số từ các chữ số 1, 2, 3, 4, 5.
Giải
Tổng
\(S = \sum {\overline {abcde} = {{10}^4}\sum a + } {10^3}\sum b + {10^2}\sum c\)
\( + 10\sum d + \sum {e.} \)
Ta có tổng \(\sum a \) là tổng của 120 số, trong đó mỗi số \(a \in \left\{ {1,2,3,4,5} \right\}\) xuất hiện đúng \(4! = 24\) lần. Vậy \(\sum {a = 24\left( {1 + 2 + 3 + 4 + 5} \right)} = 360.\) Tương tự \(\sum {b = \sum {c = \sum {d = \sum e = 360} } } \)
Vậy \(S = 360.11111 = 3999960\)
sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục