Xem thêm: Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn.
Cho tam giác ABC vuông góc ở A. Đường tròn đường kính AB cắt BC ở D. Tiếp tuyến ở D cắt AC ở P. Chứng minh PD = PC.
Giải
Trong đường tròn (O) ta có \(\widehat C\) là góc có đỉnh ở ngoài đường tròn.
\(\widehat C = {1 \over 2}\) (sđ \(\overparen{AmB}\) - sđ \(\overparen{AD}\)) (tính chất góc có đỉnh ở ngoài đường tròn)
mà sđ \(\overparen{AmB}\) = sđ \(\overparen{ADB}\) = 1800
\(\widehat C = {1 \over 2}\) (sđ \(\overparen{ADB}\) - sđ \(\overparen{AD}\)) = \( {1 \over 2}\) (sđ \(\overparen{AD}\) + sđ \(\overparen{DB}\) - sđ \(\overparen{AD}\))= \( {1 \over 2}\) sđ \(\overparen{BD}\) (1)
\(\widehat {CDP} = \widehat {BDx}\) (đối đỉnh) (2)
\(\widehat {BDx} = {1 \over 2}\) sđ \(\overparen{BD}\) (góc giữa tia tiếp tuyến và dây cung) (3)
Từ (1), (2) và (3) suy ra: \(\widehat C = \widehat {CDP} \Rightarrow \Delta PCD\) cân tại P. Vậy PD = PC
Sachbaitap.com
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục