Xem thêm: Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn.
A, B, C là ba điểm thuộc đường tròn (O) sao cho tiếp tuyến tại A cắt tia BC tại D.
Tia phân giác của \(\widehat {BAC}\) cắt đường tròn ở M, tia phân giác của \(\widehat D\) cắt AM ở I. Chứng minh DI \( \bot AM\).
Giải
\(\widehat {BAM} = \widehat {MAC}\) (vì AM là tia phân giác của \(\widehat {BAC}\))
\( \Rightarrow \widehat {BM} =\) \(\overparen{CM}\) (1)
Ta có: \(\widehat {DAM} = {1 \over 2}\) sđ \(\overparen{ACM}\) (góc giữa tia tiếp tuyến và dây cung)
Hay \(\widehat {DAM} = {1 \over 2}\) (sđ \(\overparen{AC}\) + sđ \(\overparen{CM}\) ) (2)
Gọi N là giao điểm của AM và BC.
Ta có: \(\widehat {ANC}\) là góc có đỉnh ở trong đường tròn (O).
\( \Rightarrow \) \(\widehat {ANC} = {1 \over 2}\) (sđ \(\overparen{AC}\) + sđ \(\overparen{BM})\) (3)
Từ (1), (2) và (3) suy ra: \(\widehat {DAM} = \widehat {ANC}\) hay \(\widehat {DAN} = \widehat {AND}\)
Suy ra: ∆DAN cân tại D có DI là tia phân giác nên suy ra DI là đường cao
\( \Rightarrow \) DI ⊥ AN hay DI ⊥ AM
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục