Xem thêm: Bài 2, 3, 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Cho tứ diện ABCD, đáy là tam giác cân và \(DA \bot mp\left( {ABC} \right),AB = AC = a,BC = {6 \over 5}a\). Gọi M là trung điểm của BC. Vẽ AH vuông góc với MD (H thuộc đường thẳng MD).
a) Chứng minh rằng \(AH \bot mp\left( {BC{\rm{D}}} \right)\).
b) Cho \(A{\rm{D}} = {4 \over 5}a\). Tính góc giữa hai đường thẳng AC và DM.
c) Gọi G1, G2 lần lượt là các trọng tâm của tam giác ABC và tam giác DBC. Chứng minh rằng \({G_1}{G_2} \bot mp\left( {ABC} \right)\).
Trả lời
a) Vì M là trung điểm của BC nên \(AM \bot BC\), mặt khác \(DA \bot \left( {ABC} \right)\) nên BC vuông góc với mp(DAM), từ đó \(BC \bot AH\).
Mà \(DM \bot AH\).
Vậy \(AH \bot mp\left( {DBC} \right)\).
b) Kẻ MN song song với AC (N ∈ AB) thì góc giữa DM và AC bằng góc giữa DM và MN, đó là \(\widehat {DMN}\) hoặc \({180^0} - \widehat {DMN}\).
Ta có:
\(\eqalign{ & MN = {1 \over 2}AC = {a \over 2},AN = {a \over 2}. \cr & D{N^2} = D{A^2} + A{N^2} = {{16} \over {25}}{a^2} + {{{a^2}} \over 4} = {{89} \over {100}}{a^2} \cr & A{M^2} = A{B^2} - B{M^2} = {a^2} - {{9{{\rm{a}}^2}} \over {25}} = {{16{{\rm{a}}^2}} \over {25}} \cr & \Rightarrow AM = {{4{\rm{a}}} \over 5}. \cr} \)
Mặt khác \(A{\rm{D}} = {{4{\rm{a}}} \over 5}\) do đó \(DM = {{4{\rm{a}}\sqrt 2 } \over 5}\).
\(\eqalign{ & D{N^2} = D{M^2} + M{N^2} - 2{\rm{D}}M.MN\cos \widehat {DMN} \cr & {{89} \over {100}}{a^2} = {{2.16{a^2}} \over {25}} + {{{a^2}} \over 4} - 2.{{4a\sqrt 2 } \over 5}.{a \over 2}\cos \widehat {DMN} \cr & = {{153{a^2}} \over {100}} - {{4{a^2}\sqrt 2 } \over 5}\cos \widehat {DMN} \cr & \Rightarrow {{4{a^2}\sqrt 2 } \over 5}\cos \widehat {DMN} = {{64{a^2}} \over {100}} \cr & \Rightarrow \cos \widehat {DMN} = {{2\sqrt 2 } \over 5}. \cr} \).
Vậy góc giữa AC và DM là α mà \(\cos \alpha = {{2\sqrt 2 } \over 5}\) .
c) Dễ thấy G1G2 // DA mà DA ⊥ (ABC) nên \({G_1}{G_2} \bot \left( {ABC} \right)\).
Sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục