Câu 3.25 trang 185 sách bài tập (SBT) - Giải tích 12

Bình chọn:
4 trên 2 phiếu

Một hình phẳng được giới hạn bởi . Ta chia đoạn [0; 1] thành n phần bằng nhau tạo thành một hình bậc thang (bởi n hình chữ nhật con như Hình bên).

Một hình phẳng được giới hạn bởi \(y = {e^{ - x}},y = 0,x = 0,x = 1\). Ta chia đoạn [0; 1] thành n phần bằng nhau tạo thành một hình bậc thang (bởi n hình chữ nhật con như Hình bên).

a) Tính diện tích Sn của hình bậc thang (tổng diện tích của n hình chữ nhật con).

b) Tìm \(\mathop {\lim }\limits_{n \to \infty } {S_n}\)  và so sánh với cách tính diện tích hình phẳng này bằng công thức tích phân.

Hướng dẫn làm bài

a) \({S_n} = {{{1 \over n}(1 - {e^{ - 1}})} \over {{e^{{1 \over n} - 1}}}}\) . HD: Theo hình 80 ta có:

\({S_n} = {1 \over n}{\rm{[}}{e^{ - {1 \over n}}} + {e^{ - 2{1 \over n}}} + ... + {e^{ - {n \over n}}}{\rm{]}} = {1 \over n}{e^{ - {1 \over n}}}{{1 - {e^{ - 1}}} \over {1 - {e^{ - {1 \over n}}}}} = {{{1 \over n}(1 - {e^{ - 1}})} \over {{e^{{1 \over n}}} - 1}}\)

b) \(\mathop {\lim }\limits_{n \to \infty } {S_n} = 1 - {e^{ - 1}}\)

Mặt khác  \(\int\limits_0^1 {{e^{ - x}}dx = 1 - {e^{ - 1}}} \)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Bài viết liên quan