Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.27 trang 185 sách bài tập (SBT) - Giải tích 12

Bình chọn:
3.5 trên 4 phiếu

Tính các nguyên hàm sau:

Tính các nguyên hàm sau:

a) \(\int {(2x - 3)\sqrt {x - 3} dx} \) , đặt \(u = \sqrt {x - 3} \)                           

b) \(\int {{x \over {{{(1 + {x^2})}^{{3 \over 2}}}}}} dx\) , đặt \(u = \sqrt {{x^2} + 1} \)

c) \(\int {{{{e^x}} \over {{e^x} + {e^{ - x}}}}} dx\) , đặt \(u = {e^{2x}} + 1\)                                      

d) \(\int {{1 \over {\sin x - \sin a}}} dx\)

e) \(\int {\sqrt x \sin \sqrt x } dx\) , đặt \(t = \sqrt x \)                                     

g)\(\int {x\ln {x \over {1 + x}}} dx\)

Hướng dẫn làm bài

a)   \({2 \over 5}{(x - 3)^{{3 \over 2}}}(2x - 1) + C\)                                       

 b)\( - {1 \over {\sqrt {1 + {x^2}} }} + C\)

c)  \({1 \over 2}\ln ({e^{2x}} + 1) + C\)                                                 

d) \({1 \over {\cos a}}\ln |{{\sin {{x - a} \over 2}} \over {\cos {{x - a} \over 2}}}| + C\) . HD: Ta có:\(\cos a = \cos ({{x - a} \over 2} - {{x + a} \over 2})\)

e) \( - 2x\cos \sqrt x  + 4\sqrt x \sin \sqrt x  + 4\cos \sqrt x  + C\)

g) \({{{x^2}} \over 2}\ln {x \over {1 + x}} + {1 \over 2}\ln |1 + x| - {1 \over 2}x + C\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Bài viết liên quan