Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 33 trang 56 Sách bài tập (SBT) Toán 9 tập 2

Bình chọn:
3.3 trên 12 phiếu

Với giá trị nào của m thì phương trình có hai nghiệm phân biệt.

Với giá trị nào của m thì phương trình có hai nghiệm phân biệt:

a) \({x^2} - 2\left( {m + 3} \right)x + {m^2} + 3 = 0\)

b) \(\left( {m + 1} \right){x^2} + 4mx + 4m - 1 = 0\)

Giải

a) Phương trình \({x^2} - 2\left( {m + 3} \right)x + {m^2} + 3 = 0\) có hai nghiệm phân biệt khi và chỉ khi \(\Delta ' > 0\)

\(\eqalign{
& \Delta ' = {\left[ { - \left( {m + 3} \right)} \right]^2} - 1\left( {{m^2} + 3} \right) \cr
& = {m^2} + 6m + 9 - {m^2} - 3 = 6m + 6 \cr
& \Delta ' > 0 \Rightarrow 6m + 6 > 0 \Leftrightarrow 6m > - 6 \Leftrightarrow m > - 1 \cr} \)

Vậy với m > -1 thì phương trình đã cho có hai nghiệm phân biệt.

b) Phương trình: \(\left( {m + 1} \right){x^2} + 4mx + 4m - 1 = 0\) có hai nghiệm phân biệt khi và chỉ khi m + 1 ≠ 0 và \(\Delta ' > 0\)

\(\eqalign{
& m + 1 \ne 0 \Rightarrow m \ne - 1 \cr
& \Delta ' = {\left( {2m} \right)^2} - \left( {m + 1} \right)\left( {4m - 1} \right) \cr
& = 4{m^2} - 4{m^2} + m - 4m + 1 = 1 - 3m \cr
& \Delta ' > 0 \Rightarrow 1 - 3m > 0 \Leftrightarrow 3m < 1 \Leftrightarrow m < {1 \over 3} \cr} \)

Vậy với \(m < {1 \over 3}\) và m ≠ -1 thì phương trình đã cho có hai nghiệm phân biệt.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan