Nghiệm chung của ba phương trình đã cho được gọi là nghiệm của hệ gồm ba phương trình ấy. Giải hệ phương trình là tìm nghiệm chung của tất cả các phương trình trong hệ. Hãy giải các hệ phương trình sau:
\(a)\left\{ {\matrix{
{3x + 5y = 34} \cr
{4x - 5y = - 13} \cr
{5x - 2y = 5} \cr} } \right.\)
\(b)\left\{ {\matrix{
{6x - 5y = - 49} \cr
{ - 3x + 2y = 22} \cr
{7x + 5y = 10} \cr} } \right.\)
Giải
\(a)\left\{ {\matrix{
{3x + 5y = 34} \cr
{4x - 5y = - 13} \cr
{5x - 2y = 5} \cr} } \right.\)
Ta giải hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{3x + 5y = 34} \cr
{4x - 5y = - 13} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{7x = 21} \cr
{4x - 5y = - 13} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 3} \cr
{4.3 - 5y = - 13} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 3} \cr
{ - 5y = - 25} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 3} \cr
{y = 5} \cr} } \right. \cr} \)
Thay x = 3 và y = 5 vào vế trái phương trình (3):
\(5.3 - 2.5 = 15 - 10 = 5\)
Vậy cặp nghiệm (x; y) = (3; 5) là nghiệm của phương trình (3).
Vậy hệ phương trình đã cho có một nghiệm (x; y) = (3;5)
\(b)\left\{ {\matrix{
{6x - 5y = - 49} \cr
{ - 3x + 2y = 22} \cr
{7x + 5y = 10} \cr} } \right.\)
Ta giải hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{6x - 5y = - 49} \cr
{7x + 5y = 10} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{13x = - 39} \cr
{7x + 5y = 10} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = - 3} \cr
{7.\left( { - 3} \right) + 5y = 10} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = - 3} \cr
{y = {{31} \over 5}} \cr} } \right. \cr} \)
Thay x = -3; \(y = {{31} \over 5}\) vào vế trái phương trình (2):
\( - 3.\left( { - 3} \right) + 2.{{31} \over 5} = 9 + {{62} \over 5} = {{107} \over 5} \ne 22\)
Vậy cặp \(\left( {x = - 3;y = {{31} \over 5}} \right)\) không phải là nghiệm của phương trình (2).
Vậy hệ phương trình đã cho vô nghiệm.
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục